首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   36篇
  国内免费   9篇
  519篇
  2021年   4篇
  2020年   7篇
  2019年   9篇
  2018年   7篇
  2017年   7篇
  2016年   8篇
  2015年   19篇
  2014年   17篇
  2013年   17篇
  2012年   20篇
  2011年   17篇
  2010年   13篇
  2009年   18篇
  2008年   13篇
  2007年   19篇
  2006年   25篇
  2005年   14篇
  2004年   15篇
  2003年   21篇
  2002年   11篇
  2001年   8篇
  2000年   8篇
  1999年   7篇
  1998年   12篇
  1997年   6篇
  1996年   7篇
  1994年   7篇
  1992年   5篇
  1991年   9篇
  1990年   7篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   17篇
  1985年   8篇
  1984年   7篇
  1983年   5篇
  1982年   10篇
  1981年   8篇
  1980年   7篇
  1979年   4篇
  1977年   9篇
  1976年   4篇
  1975年   9篇
  1974年   10篇
  1973年   9篇
  1972年   3篇
  1971年   4篇
  1970年   3篇
  1968年   3篇
排序方式: 共有519条查询结果,搜索用时 0 毫秒
441.
3-hydroxyphenylacetylene (3-HPA) served as a novel, activity-dependent, fluorogenic and chromogenic probe for bacterial enzymes known to degrade toluene via meta ring fission of the intermediate, 3-methylcatechol. By this direct physiological analysis, cells grown with an aromatic substrate to induce the synthesis of toluene-degrading enzymes were fluorescently labeled.  相似文献   
442.
443.
We hypothesized that exposure of murine fetuses to environmental toxins, such as nitrofen, during early embryogenesis alters vasculogenesis. To address our hypothesis, we assessed protein levels of endothelial cell-selective angiogenic factors: angiopoietin (ANG)-1, vascular endothelial growth factor (VEGF), and mediator of VEGF signaling, VEGF receptor-2 [fetal liver kinase (Flk)-1], a transmembrane receptor tyrosine kinase. VEGF and Flk-1 proteins were lower in hypoplastic lungs from pseudoglandular to alveolar stages than in normal lungs at equivalent developmental time points significant for induction of pulmonary vasculogenesis and angiogenesis. ANG-1 protein was higher in hypoplastic lungs than in normal lungs at all the developmental stages considered in this study, i.e., pseudoglandular, canalicular, saccular, and alveolar stages. We assessed exogenous VEGF-mediated endothelial cell response on extracellular signal-regulated kinase (ERK) 1/2, also referred to as p44/42 mitogen-activated protein kinase. Hypoplastic lungs had more elevated ERK 1/2 protein than normal developing lungs. Exposure to exogenous VEGF activated ERK 1/2 in normal developing lungs but not in hypoplastic lungs. Our results suggest that in hypoplastic lungs: 1) low VEGF signifies negative effects on vasculogenesis/angiogenesis and indicates altered endothelial-mesenchymal interactions; 2) increased ANG-1 protein may be required to maintain vessel integrity and quiescence; and 3) regulation of ERK 1/2 protein is affected in hypoplastic lungs. We speculate that extensive remodeling of blood vessels in hypoplastic lungs may occur to compensate for structurally and functionally defective vasculature.  相似文献   
444.
Certain leukocytes release serine proteases that sustain inflammatory processes and cause disease conditions, such as asthma and chronic obstructive pulmonary disease. We identified beta-ketophosphonate 1 (JNJ-10311795; RWJ-355871) as a novel, potent dual inhibitor of neutrophil cathepsin G (K(i) = 38 nm) and mast cell chymase (K(i) = 2.3 nm). The x-ray crystal structures of 1 complexed with human cathepsin G (1.85 A) and human chymase (1.90 A) reveal the molecular basis of the dual inhibition. Ligand 1 occupies the S(1) and S(2) subsites of cathepsin G and chymase similarly, with the 2-naphthyl in S(1), the 1-naphthyl in S(2), and the phosphonate group in a complex network of hydrogen bonds. Surprisingly, however, the carboxamido-N-(naphthalene-2-carboxyl)piperidine group is found to bind in two distinct conformations. In cathepsin G, this group occupies the hydrophobic S(3)/S(4) subsites, whereas in chymase, it does not; rather, it folds onto the 1-naphthyl group of the inhibitor itself. Compound 1 exhibited noteworthy anti-inflammatory activity in rats for glycogen-induced peritonitis and lipopolysaccharide-induced airway inflammation. In addition to a marked reduction in neutrophil influx, 1 reversed increases in inflammatory mediators interleukin-1alpha, interleukin-1beta, tissue necrosis factor-alpha, and monocyte chemotactic protein-1 in the glycogen model and reversed increases in airway nitric oxide levels in the lipopolysaccharide model. These findings demonstrate that it is possible to inhibit both cathepsin G and chymase with a single molecule and suggest an exciting opportunity in the treatment of asthma and chronic obstructive pulmonary disease.  相似文献   
445.
In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities—a priori defined as wet, moist, and dry meadow—along short streamside topographic gradients in two montane meadows in northeast Oregon. The objectives were to: (1) compare above- and belowground biomass in the three meadow communities; (2) examine relations among plant species richness, biomass distribution, water table depth, and soil redox potential along the streamside elevational gradients. We installed wells and platinum electrodes along transects (perpendicular to the stream; n=5 per site) through the three plant communities, and monitored water table depth and soil redox potential (10 and 25 cm depth) from July 1997 to August 1999. Mean water table depth and soil redox potential differed significantly along the transects, and characterized a strong environmental gradient. Community differences in plant species composition were reflected in biomass distribution. Highest total biomass (live+dead) occurred in the sedge-dominated wet meadows (4,311±289 g/m2), intermediate biomass (2,236±221 g/m2) was seen in the moist meadow communities, dominated by grasses and sedges, and lowest biomass (1,403±113 g/m2) was observed in the more diverse dry meadows, dominated by grasses and forbs. In the wet and moist communities, belowground biomass (live+dead) comprised 68–81% of the totals. Rhizome-to-root ratios and distinctive vertical profiles of belowground biomass reflected characteristics of the dominant graminoid species within each community. Total biomass was positively correlated with mean water table depth, and negatively correlated with mean redox potential (10 cm and 25 cm depths; P <0.01) and species richness (P <0.05), indicating that the distribution of biomass coincided with the streamside edaphic gradient in these riparian meadows.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   
446.
A photoperiod with a short photophase induces a winterlike phenotype in Siberian hamsters that includes a progressive decrease in food intake and body mass and reproductive organ regression, as well as reversible hypothermia in the form of short-duration torpor. Torpor substantially reduces energy utilization and is not initiated until body mass, fat stores, and serum leptin concentrations are at their nadir. Because photoperiod-dependent torpor is delayed until fat reserves are lowest, leptin concentrations may be a permissive factor for torpor onset. This conjecture was tested by implanting osmotic minipumps into Siberian hamsters manifesting spontaneous torpor; the animals received a constant release of leptin or vehicle for 14 days. Exogenous leptin treatment eliminated torpor in a significant proportion of treated hamsters, whereas treatment with the vehicle did not. Similarly, endogenous serum leptin concentrations were markedly reduced in all animals undergoing daily torpor. Although simply reducing leptin concentrations below a threshold value is not sufficient for torpor initiation, reduced leptin concentrations nevertheless appear necessary for its occurrence. It is proposed that drastically reduced leptin concentrations provide a "starvation signal" to an as yet unidentified central mechanism mediating torpor initiation.  相似文献   
447.
To understand the species selectivity in a series of alpha-methyl-alpha-phenoxy carboxylic acid PPARalpha/gamma dual agonists (1-11), structure-based molecular modeling was carried out in the ligand binding pockets of both human and mouse PPARalpha. This study suggested that interaction of both 4-phenoxy and phenyloxazole substituents of these ligands with F272 and M279 in mouse PPARalpha leads to the species-specific divergence in ligand binding. Insights obtained in the molecular modeling studies of these key interactions resulted in the ability to convert a human-selective PPARalpha agonist to a human and mouse dual agonist within the same platform.  相似文献   
448.
449.
450.
The synthesis and in vitro Class III antiarrhythmic activity of several 4-aroyl (and aryl)-1-aralkylpiperazine and piperidine derivatives are described. Among several potent compounds identified in the series, RWJ-28810 (3), with its EC20 of 3 nM, ranks as one of the most potent (in vitro) compounds reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号