首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   739篇
  免费   45篇
  国内免费   2篇
  2023年   7篇
  2022年   11篇
  2021年   27篇
  2020年   8篇
  2019年   18篇
  2018年   16篇
  2017年   15篇
  2016年   28篇
  2015年   30篇
  2014年   42篇
  2013年   53篇
  2012年   53篇
  2011年   48篇
  2010年   36篇
  2009年   30篇
  2008年   49篇
  2007年   40篇
  2006年   29篇
  2005年   38篇
  2004年   27篇
  2003年   16篇
  2002年   20篇
  2001年   11篇
  2000年   12篇
  1999年   9篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   6篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   9篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1979年   4篇
  1978年   3篇
  1977年   7篇
  1976年   2篇
  1975年   3篇
  1973年   3篇
  1971年   4篇
  1970年   4篇
  1969年   2篇
  1958年   2篇
排序方式: 共有786条查询结果,搜索用时 500 毫秒
91.
AML1/RUNX1, a member of the core binding factor (CBF) family stimulates myelopoiesis and lymphopoiesis by activating lineage-specific genes. In addition, AML1 induces S phase entry in 32Dcl3 myeloid or Ba/F3 lymphoid cells via transactivation. We now found that AML1 levels are regulated during the cell cycle. 32Dcl3 and Ba/F3 cell cycle fractions were prepared using elutriation. Western blotting and a gel shift/supershift assay demonstrated that endogenous CBF DNA binding and AML1 levels were increased 2-4-fold in S and G(2)/M phase cells compared with G(1) cells. In addition, G(1) arrest induced by mimosine reduced AML1 protein levels. In contrast, AML1 RNA did not vary during cell cycle progression relative to actin RNA. Analysis of exogenous Myc-AML1 or AML1-ER demonstrated a significant reduction in G(1) phase cells, whereas levels of exogenous DNA binding domain alone were constant, lending support to the conclusion that regulation of AML1 protein stability contributes to cell cycle variation in endogenous AML1. However, cytokine-dependent AML1 phosphorylation was independent of cell cycle phase, and an AML1 mutant lacking two ERK phosphorylation sites was still cell cycle-regulated. Inhibition of AML1 activity with the CBFbeta-SMMHC or AML1-ETO oncoproteins reduced cyclin D3 RNA expression, and AML1 bound and activated the cyclin D3 promoter. Signals stimulating G(1) to S cell cycle progression or entry into the cell cycle in immature hematopoietic cells might do so in part by inducing AML1 expression, and mutations altering pathways regulating variation in AML1 stability potentially contribute to leukemic transformation.  相似文献   
92.
93.
Voltage‐gated calcium channels (VGCCs) serve as a critical link between electrical signaling and diverse cellular processes in neurons. We have exploited recent advances in genetically encoded calcium sensors and in culture techniques to investigate how the VGCC α1 subunit EGL‐19 and α2/δ subunit UNC‐36 affect the functional properties of C. elegans mechanosensory neurons. Using the protein‐based optical indicator cameleon, we recorded calcium transients from cultured mechanosensory neurons in response to transient depolarization. We observed that in these cultured cells, calcium transients induced by extracellular potassium were significantly reduced by a reduction‐of‐function mutation in egl‐19 and significantly reduced by L‐type calcium channel inhibitors; thus, a main source of touch neuron calcium transients appeared to be influx of extracellular calcium through L‐type channels. Transients did not depend directly on intracellular calcium stores, although a store‐independent 2‐APB and gadolinium‐sensitive calcium flux was detected. The transients were also significantly reduced by mutations in unc‐36, which encodes the main neuronal α2/δ subunit in C. elegans. Interestingly, while egl‐19 mutations resulted in similar reductions in calcium influx at all stimulus strengths, unc‐36 mutations preferentially affected responses to smaller depolarizations. These experiments suggest a central role for EGL‐19 and UNC‐36 in excitability and functional activity of the mechanosensory neurons. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   
94.
Lysyl oxidase (LOX) is secreted as a proenzyme (proLOX) that is proteolytically processed in the extracellular milieu to release the propeptide and mature, active LOX. LOX oxidizes lysyl residues of a number of protein substrates in the extracellular matrix and on the cell surface, which impacts several physiological and disease states. Although the LOX propeptide (LOX‐PP) is glycosylated, little is known about the role of this modification in LOX secretion and activity. To gain insight into this issue, cells were transfected with native, full‐length LOX cDNA (pre‐pro‐LOX), the N‐glycosylation null pre‐[N/Q]pro‐LOX cDNA and the deletion mutant pre‐LOX cDNA, referred to as secretory LOX, in which mature LOX is targeted to the secretory pathway without its N‐terminal propeptide sequence. The results show that glycosylation of the LOX‐PP is not required for secretion and extracellular processing of pro‐LOX but it is required for optimal enzyme activity of the resulting mature LOX. Complete deletion of the propeptide sequence prevents mature LOX from exiting the endoplasmic reticulum (ER). Taken together, our study points out the requirement of the LOX‐PP for pro‐LOX exit from the ER and is the first to highlight the influence of LOX‐PP glycosylation on LOX enzyme activity. J. Cell. Biochem. 111: 1231–1243, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
95.
96.
FliZ is an activator of class 2 flagellar gene expression in Salmonella enterica. To understand its role in flagellar assembly, we investigated how FliZ affects gene expression dynamics. We demonstrate that FliZ participates in a positive-feedback loop that induces a kinetic switch in class 2 gene expression.  相似文献   
97.
Although the Na(+)/H(+) exchanger (NHE) is considered to be involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) through the Na(+)/Ca(2+) exchanger, the exact mechanisms of its participation in Ca(2+) handling by cardiomyocytes are not fully understood. Isolated rat cardiomyocytes were treated with or without agents that are known to modify Ca(2+) movements in cardiomyocytes and exposed to an NHE inhibitor, 5-(N-methyl-N-isobutyl)amiloride (MIA). [Ca(2+)](i) in cardiomyocytes was measured spectrofluorometrically with fura 2-AM in the absence or presence of KCl, a depolarizing agent. MIA increased basal [Ca(2+)](i) and augmented the KCl-induced increase in [Ca(2+)](i) in a concentration-dependent manner. The MIA-induced increase in basal [Ca(2+)](i) was unaffected by extracellular Ca(2+), antagonists of the sarcolemmal (SL) L-type Ca(2+) channel, and inhibitors of the SL Na(+)/Ca(2+) exchanger, SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. However, the MIA-induced increase in basal [Ca(2+)](i) was attenuated by inhibitors of SL Na(+)-K(+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+) transport. On the other hand, the MIA-mediated augmentation of the KCl response was dependent on extracellular Ca(2+) concentration and attenuated by agents that inhibit SL L-type Ca(2+) channels, the SL Na(+)/Ca(2+) exchanger, SL Na(+)-K(+)-ATPase, and SR Ca(2+) release channels and the SR Ca(2+) pump. However, the effect of MIA on the KCl-induced increase in [Ca(2+)](i) remained unaffected by treatment with inhibitors of SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. MIA and a decrease in extracellular pH lowered intracellular pH and increased basal [Ca(2+)](i), whereas a decrease in extracellular pH, in contrast to MIA, depressed the KCl-induced increase in [Ca(2+)](i) in cardiomyocytes. These results suggest that NHE may be involved in regulation of [Ca(2+)](i) and that MIA-induced increases in basal [Ca(2+)](i), as well as augmentation of the KCl-induced increase in [Ca(2+)](i), in cardiomyocytes are regulated differentially.  相似文献   
98.
Muscle damage with a lack of regeneration, manifests itself in several life-threatening diseases, including cancer cachexia, congestive heart failure, AIDS and sepsis. Often misdiagnosed as a condition simply of weight loss, cachexia is actually a highly complex metabolic disorder involving features of anorexia, anaemia, lipolysis and insulin resistance. A significant loss of lean body mass arises from such conditions, resulting in wasting of skeletal muscle. Unlike starvation, the weight loss seen in chronic illnesses arises equally from loss of muscle and of fat. The cachectic state is particularly problematic in cancer, typifying poor prognosis and often lowering responses to chemotherapy and radiation treatment. More than half of cancer patients suffer from cachexia, and strikingly, nearly one-third of cancer deaths are related to cachexia rather than the tumour burden. In considering this disorder, we are faced with a conundrum; how is it possible for uncontrolled growth to prevail in the tumour, in the face of unrestrained tissue loss in our muscles? Consistently, the catabolic state has been associated with a shift in the homeostatic balance between muscle synthesis and degradation mediated by the actions of growth factors and cytokines. Indeed, tumour necrosis factor-alpha (TNF-alpha) levels are raised in several animal models of cachectic muscle wasting, whereas the insulin-like growth factor (IGF) system acts potently to regulate muscle development, hypertrophy and maintenance. This concept of skeletal muscle homeostasis, often viewed as the net balance between two separate processes of protein synthesis and degradation has however changed. More recently, the view is that these two biochemical processes are not occurring independently of each other but in fact are finely co-ordinated by a web of intricate signalling networks. This review, therefore, aims to discuss data currently available regarding the mechanisms of degeneration and regeneration with specific emphasis on the potential and controversial cross-talk which may exist between anabolic growth factors (e.g. IGF-I) and catabolic cytokines (e.g. TNF-alpha). Also importantly, the potential impact at a cellular level of exercise, diet and age will be addressed. Finally, the ability to 'hi-jack' signalling pathways traditionally believed to be for growth and survival or death will be reviewed. It is anticipated that such a review will highlight significant gaps in our knowledge of the cachectic state as well as provide caution with regards to therapeutics suggesting total block on inflammatory processes such as that associated with TNF-alpha action.  相似文献   
99.
A set of 104 wheat recombinant inbred lines (RILs) obtained from a cross between parents resistant (HD 29) and susceptible (WH 542) to karnal bunt (KB) (caused by Neovossia indica) were screened and used to identify random amplified polymorphic DNA (RAPD) markers linked with resistance to karnal bunt as these would allow indirect marker assisted selection of KB resistant genotypes. The two parents were analysed with 92 RAPD primers. A total of 65 primers proved functional by giving scorable polymerase chain reaction (PCR) products. Of these, 21 (32 %) primers detected polymorphism between the two parental genotypes. Using these primers, bulked segregant analysis was carried out on two bulk DNAs, one obtained by pooling DNA from 10 KB resistant RILs and the other similarly derived by pooling 10 KB susceptible RILs. One marker, OPM-20 showed apparent association with resistance to KB. This was confirmed following selective genotyping of individual RILs included in the bulks.  相似文献   
100.
Alzheimer disease (AD) is characterized by dementia that begins as mild short term memory deficit and culminates in total loss of cognitive and executive functions. The present study was conducted to evaluate the neuroprotective potential of Bacopa monnieri (BM), an Indian traditional medicinal plant effective against cognitive impairment, in colchicine-induced dementia. Intracerebroventricular administration of colchicine (15?μg/5?μl) induced cognitive impairment in rats as assessed by elevated plus maze. This was accompanied by a significant increase in oxidative stress in term of enhanced levels of lipid peroxidation and protein carbonyls. Concomitantly, decrease in activity of antioxidant enzymes was observed in colchicine treated animals. BM (50?mg/kg body weight) supplementation reversed memory impairment observed in the colchicine treated rats. BM administration attenuated oxidative damage, as evident by decreased LPO and protein carbonyl levels and restoration in activities of the antioxidant enzymes. The activity of membrane bound enzymes (Na(+)K(+) ATPase and AChE) was altered in colchicine treated brain regions and BM supplementation was able to restore the activity of enzymes to comparable values observed in controls. The results suggest therapeutic potential of BM in the treatment of AD associated cognitive decline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号