首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   739篇
  免费   45篇
  国内免费   2篇
  2023年   7篇
  2022年   11篇
  2021年   27篇
  2020年   8篇
  2019年   18篇
  2018年   16篇
  2017年   15篇
  2016年   28篇
  2015年   30篇
  2014年   42篇
  2013年   53篇
  2012年   53篇
  2011年   48篇
  2010年   36篇
  2009年   30篇
  2008年   49篇
  2007年   40篇
  2006年   29篇
  2005年   38篇
  2004年   27篇
  2003年   16篇
  2002年   20篇
  2001年   11篇
  2000年   12篇
  1999年   9篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   6篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   9篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1979年   4篇
  1978年   3篇
  1977年   7篇
  1976年   2篇
  1975年   3篇
  1973年   3篇
  1971年   4篇
  1970年   4篇
  1969年   2篇
  1958年   2篇
排序方式: 共有786条查询结果,搜索用时 31 毫秒
131.
132.
Platelets, which play a central role in thrombosis and hemostasis, develop from megakaryocytes. Signal transduction originated from the megakaryocyte growth and development factor, the Mpl ligand, which leads to megakaryocyte differentiation, polyploidization, and maturation, has been gradually characterized. In this study, we report the inducibility of Mst1, a recently described serine/threonine kinase, by Mpl ligand and the effect of its induced expression on megakaryocyte differentiation. The steady‐state level of mst1 message and Mst1‐associated kinase activity increased in response to Mpl ligand. Ectopic expression of human mst1 in a mouse megakaryocytic cell line resulted in a drastic increase in DNA content per cell. Elevated expression of megakaryocyte differentiation markers, such as acetylcholine esterase, PF4, and GPIIb was also observed in hmst1‐expressing cells. Activation of p38 MAPK, a known downstream effector of Mst1, was shown to be required for polyploidization, but not for enhanced expression of differentiation markers. Our study thus designates Mst1 as a Mpl ligand‐responsive signaling molecule that promotes induction of lineage‐specific cellular programming. J. Cell. Biochem. 76:44–60, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   
133.

Key message

Markers linked to stem rust resistance gene Sr47 were physically mapped in three small Aegilops speltoides chromosomal bins. Five markers, including two PCR-based SNP markers, were validated for marker-assisted selection.

Abstract

In durum wheat (Triticum turgidum subsp. durum), the gene Sr47 derived from Aegilops speltoides conditions resistance to race TTKSK (Ug99) of the stem rust pathogen (Puccinia graminis f. sp. tritici). Sr47 is carried on small interstitial translocation chromosomes (Ti2BL-2SL-2BL·2BS) in which the Ae. speltoides chromosome 2S segments are divided into four bins in genetic stocks RWG35, RWG36, and RWG37. Our objective was to physically map molecular markers to bins and to determine if any of the molecular markers would be useful in marker-assisted selection (MAS). Durum cultivar Joppa was used as the recurrent parent to produce three BC2F2 populations. Each BC2F2 plant was genotyped with markers to detect the segment carrying Sr47, and stem rust testing of BC2F3 progeny with race TTKSK confirmed the genotyping. Forty-nine markers from published sources, four new SSR markers, and five new STARP (semi-thermal asymmetric reverse PCR) markers, were evaluated in BC2F2 populations for assignment of markers to bins. Sr47 was mapped to bin 3 along with 13 markers. No markers were assigned to bin 1; however, 7 and 13 markers were assigned to bins 2 and 4, respectively. Markers Xrwgs38a, Xmag1729, Xwmc41, Xtnac3119, Xrwgsnp1, and Xrwgsnp4 were found to be useful for MAS of Sr47. However, STARP markers Xrwgsnp1 and Xrwgsnp4 can be used in gel-free systems, and are the preferred markers for high-throughput MAS. The physical mapping data from this study will also be useful for pyramiding Sr47 with other Sr genes on chromosome 2B.
  相似文献   
134.
135.
Breeding for salt tolerance using traditional screening and selection methods have been limited by the complex and polygenic nature of salt tolerance trait. This study was designed to evaluate some of the premium Basmati rice varieties for salt tolerance and to characterize genetic diversity among the rice varieties with different adaptations to saline soils using microsatellite (SSR) and ISSR markers. Plants of nine rice varieties including salt tolerant, salt sensitive and traditional Basmati, were grown in hydroponics using Yoshida solution containing 0 (control, pH 5.0) and 30 mM NaCl (Electrical conductivity 4.8 d/S, pH 5.0) and assessed for salinity tolerance on 1–9 scale as per IRRI standard evaluation system using seedling growth parameters, visual salt injuries and Na-K ratio. Physio-morphological studies showed that traditional Basmati rice varieties (Basmati 370 and HBC19) were more sensitive than the salt sensitive control variety, MI-48. SSR as well as ISSR marker systems generated higher levels of polymorphism and could distinguish between all the 9 rice cultivars. A total of 299 (225 polymorphic) and 437 (430 polymorphic) bands were detected using 28 UBC ISSR primers and 100 welldistributed mapped SSR markers, respectively. ISSR and SSR marker data-sets showed moderate levels of positive correlation (Mantel test, r = 0.43). The ISSR and SSR marker data analyzed using clustering algorithms showed two distinct clusters separating the Basmati (Basmati 370, HBC19 and CSR-30) from other non-aromatic indica (IR36, Pokkali, CSR10 and MI-48) rice varieties indicating greater divergence between Basmati and non-aromatic indica rice genotypes. Marker analysis showed a close relationship among the two traditional (Basmati 370 and HBC19) and cross-bred (CSR30) Basmati rice varieties and greater diversity between the two salt-tolerant genotypes, Pokkali and BR4-10.  相似文献   
136.
137.
Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis   总被引:2,自引:1,他引:1  
MicroRNA398 targets two Cu/Zn superoxide dismutases (CSD1 and CSD2) in higher plants. Previous investigations revealed both decreased miR398 expression during high Cu2+ or paraquat stress and increased expression under low Cu2+ or high sucrose in the growth medium. Here, we show that additional abiotic stresses such as ozone and salinity also affect miR398 levels. Ozone fumigation decreased miR398 levels that were gradually restored to normal levels after relieved from the stress. Furthermore, miR398 levels decreased in Arabidopsis leaves infiltrated with avirulent strains of Pseudomonas syringae pv. tomato, Pst DC3000 (avrRpm1 or avrRpt2) but not the virulent strain Pst DC3000. To our knowledge, miR398 is the first miRNA shown to be down-regulated in response to biotic stress (P. syringae). CSD1, but not CSD2, mRNA levels were negatively correlated with miR398 levels during ozone, salinity and biotic stress, suggesting that CSD2 regulation is not strictly under miR398 control during diverse stresses. Overall, this study further establishes a link between oxidative stress and miR398 in Arabidopsis.  相似文献   
138.
Poly(acrylonitrile-methylmethacrylate-sodium vinylsulfonate) membranes were chemically modified and loaded with gold nanoparticles. Acetylcholinesterase was immobilized on the prepared membranes in accordance with two distinctive procedures, the first of which involved immobilization of the enzyme by convection, and the other by diffusion. The prepared enzyme carriers were used for the construction of amperometric biosensors for detection of acetylthiocholine.Two sets of experiments were carried out. The first set was designed so that to evaluate the effects of the gold nanoparticle deployment and the immobilization procedures over the biosensor effectiveness. The other set of experiments was conducted in order to determine the influence of the individual components of the enzyme mixture, containing gold nanoparticles, acetylcholinesterase, bovine serum albumin and glutaraldehyde, over the current output of the constructed acetylthiocholine biosensors. The optimum composition of the mixture was determined to be as follows: enzyme, 0.1 U ml?1; gold nanoparticles, 0.50 ml (per 1 ml enzyme mixture); albumin, 0.5% and glutaraldehyde, 0.7%.On the basis of the experimental results, the most efficient enzyme membrane was selected and used for the preparation of an acetylthiocholine biosensor. Its basic amperometric characteristics were investigated. A calibration plot was obtained for ATCh concentration ranging from 10 to 400 μM. A linear interval was detected along the calibration curve from 10 to 170 μM. The sensitivity of the constructed biosensor was calculated to be 0.066 μA μM?1 cm?2. The correlation coefficient for this concentration range was 0.996. The detection limit with regard to ATCh was calculated to be 1.80 μM.The potential application of the biosensor for detection and quantification of organophosphate pesticides was investigated as well. It was tested against sample solutions of Paraoxon. The biosensor detection limit for Paraoxon was determined, 7.39 × 10?11 g l?1, as well as the concentration interval (10?10 to 10?7 g l?1) within which the biosensor response was linearly dependant on Paraoxon concentration.Finally the storage stability of the enzyme carrier was traced for a period of 50 days. After storage for 20 days the sensor retained 75% of its initial current response and after 30 days ?25%.  相似文献   
139.
140.
Voltage-gated calcium channels (VGCCs) serve as a critical link between electrical signaling and diverse cellular processes in neurons. We have exploited recent advances in genetically encoded calcium sensors and in culture techniques to investigate how the VGCC alpha1 subunit EGL-19 and alpha2/delta subunit UNC-36 affect the functional properties of C. elegans mechanosensory neurons. Using the protein-based optical indicator cameleon, we recorded calcium transients from cultured mechanosensory neurons in response to transient depolarization. We observed that in these cultured cells, calcium transients induced by extracellular potassium were significantly reduced by a reduction-of-function mutation in egl-19 and significantly reduced by L-type calcium channel inhibitors; thus, a main source of touch neuron calcium transients appeared to be influx of extracellular calcium through L-type channels. Transients did not depend directly on intracellular calcium stores, although a store-independent 2-APB and gadolinium-sensitive calcium flux was detected. The transients were also significantly reduced by mutations in unc-36, which encodes the main neuronal alpha2/delta subunit in C. elegans. Interestingly, while egl-19 mutations resulted in similar reductions in calcium influx at all stimulus strengths, unc-36 mutations preferentially affected responses to smaller depolarizations. These experiments suggest a central role for EGL-19 and UNC-36 in excitability and functional activity of the mechanosensory neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号