排序方式: 共有190条查询结果,搜索用时 109 毫秒
31.
Jessica L. Grimsby Hector A. Lucero Philip C. Trackman Katya Ravid Herbert M. Kagan 《Journal of cellular biochemistry》2010,111(5):1231-1243
Lysyl oxidase (LOX) is secreted as a proenzyme (proLOX) that is proteolytically processed in the extracellular milieu to release the propeptide and mature, active LOX. LOX oxidizes lysyl residues of a number of protein substrates in the extracellular matrix and on the cell surface, which impacts several physiological and disease states. Although the LOX propeptide (LOX‐PP) is glycosylated, little is known about the role of this modification in LOX secretion and activity. To gain insight into this issue, cells were transfected with native, full‐length LOX cDNA (pre‐pro‐LOX), the N‐glycosylation null pre‐[N/Q]pro‐LOX cDNA and the deletion mutant pre‐LOX cDNA, referred to as secretory LOX, in which mature LOX is targeted to the secretory pathway without its N‐terminal propeptide sequence. The results show that glycosylation of the LOX‐PP is not required for secretion and extracellular processing of pro‐LOX but it is required for optimal enzyme activity of the resulting mature LOX. Complete deletion of the propeptide sequence prevents mature LOX from exiting the endoplasmic reticulum (ER). Taken together, our study points out the requirement of the LOX‐PP for pro‐LOX exit from the ER and is the first to highlight the influence of LOX‐PP glycosylation on LOX enzyme activity. J. Cell. Biochem. 111: 1231–1243, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
32.
The red cell membrane is stabilized by a spectrin/actin-based cortical cytoskeleton connected to the phospholipid bilayer via multiple protein bridges. By virtue of its interaction with ankyrin and adducin, the anion transporter, band 3 (AE1), contributes prominently to these bridges. In a previous study, we demonstrated that an exposed loop comprising residues 175-185 of the cytoplasmic domain of band 3 (cdB3) constitutes a critical docking site for ankyrin on band 3. In this paper, we demonstrate that an adjacent loop, comprising residues 63-73 of cdB3, is also essential for ankyrin binding. Data that support this hypothesis include the following. (1) Deletion or mutation of residues within the latter loop abrogates ankyrin binding without affecting cdB3 structure or its other functions. (2) Association of cdB3 with ankyrin is inhibited by competition with the loop peptide. (3) Resealing of the loop peptide into erythrocyte ghosts alters membrane morphology and stability. To characterize cdB3-ankyrin interaction further, we identified their interfacial contact sites using molecular docking software and the crystal structures of D(3)D(4)-ankyrin and cdB3. The best fit for the interaction reveals multiple salt bridges and hydrophobic contacts between the two proteins. The most important ion pair interactions are (i) cdB3 K69-ankyrin E645, (ii) cdB3 E72-ankyrin K611, and (iii) cdB3 D183-ankyrin N601 and Q634. Mutation of these four residues on ankyrin yielded an ankyrin with a native CD spectrum but little or no affinity for cdB3. These data define the docking interface between cdB3 and ankyrin in greater detail. 相似文献
33.
Polyploidy is a state in which a cell contains multiple copies of its entire genome, while a normal diploid cell contains only two sets of homologous chromosomes. Although widely studied and pervasive in nature, the signals and mechanisms of polyploidization and its accompanying operational consequences are still unclear. This review focuses on relevant questions in deciphering the regulation of polyploidization of vascular smooth muscle cells (VSMC) in mammals and the role of polyploidy in various vascular pathologies, such as hypertension and aging. Additionally, we will explore new investigations in polyploidization of VSMCs involving the rapidly expanding fields of oxidative stress and senescence. J. Cell. Physiol. 215: 588-592, 2008. (c) 2008 Wiley-Liss, Inc. 相似文献
34.
Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador 总被引:16,自引:2,他引:14
35.
Bernardin-Fried F Kummalue T Leijen S Collector MI Ravid K Friedman AD 《The Journal of biological chemistry》2004,279(15):15678-15687
AML1/RUNX1, a member of the core binding factor (CBF) family stimulates myelopoiesis and lymphopoiesis by activating lineage-specific genes. In addition, AML1 induces S phase entry in 32Dcl3 myeloid or Ba/F3 lymphoid cells via transactivation. We now found that AML1 levels are regulated during the cell cycle. 32Dcl3 and Ba/F3 cell cycle fractions were prepared using elutriation. Western blotting and a gel shift/supershift assay demonstrated that endogenous CBF DNA binding and AML1 levels were increased 2-4-fold in S and G(2)/M phase cells compared with G(1) cells. In addition, G(1) arrest induced by mimosine reduced AML1 protein levels. In contrast, AML1 RNA did not vary during cell cycle progression relative to actin RNA. Analysis of exogenous Myc-AML1 or AML1-ER demonstrated a significant reduction in G(1) phase cells, whereas levels of exogenous DNA binding domain alone were constant, lending support to the conclusion that regulation of AML1 protein stability contributes to cell cycle variation in endogenous AML1. However, cytokine-dependent AML1 phosphorylation was independent of cell cycle phase, and an AML1 mutant lacking two ERK phosphorylation sites was still cell cycle-regulated. Inhibition of AML1 activity with the CBFbeta-SMMHC or AML1-ETO oncoproteins reduced cyclin D3 RNA expression, and AML1 bound and activated the cyclin D3 promoter. Signals stimulating G(1) to S cell cycle progression or entry into the cell cycle in immature hematopoietic cells might do so in part by inducing AML1 expression, and mutations altering pathways regulating variation in AML1 stability potentially contribute to leukemic transformation. 相似文献
36.
Substitution of threonine or serine for the evolutionary conserved intramembrane proline P347 of the Bacillus subtilis multidrug transporter Bmr significantly increases the toxin-effluxing activity of Bmr without affecting its abundance in the cell. In cocultivation experiments, we demonstrate that although the mutant T347 Bmr is advantageous to cells growing in the presence of a toxin, the wild-type P347 Bmr is advantageous under the conditions of nutritional limitation. This may explain why Bmr has evolved the way it did, that is, with proline at position 347. These observations provide a basis for speculating that the evolution of Bmr has been determined by its presently unidentified natural function rather than by its ability to expel diverse toxins from the cell. 相似文献
37.
38.
Platelets, which play a central role in thrombosis and hemostasis, develop from megakaryocytes. Signal transduction originated from the megakaryocyte growth and development factor, the Mpl ligand, which leads to megakaryocyte differentiation, polyploidization, and maturation, has been gradually characterized. In this study, we report the inducibility of Mst1, a recently described serine/threonine kinase, by Mpl ligand and the effect of its induced expression on megakaryocyte differentiation. The steady‐state level of mst1 message and Mst1‐associated kinase activity increased in response to Mpl ligand. Ectopic expression of human mst1 in a mouse megakaryocytic cell line resulted in a drastic increase in DNA content per cell. Elevated expression of megakaryocyte differentiation markers, such as acetylcholine esterase, PF4, and GPIIb was also observed in hmst1‐expressing cells. Activation of p38 MAPK, a known downstream effector of Mst1, was shown to be required for polyploidization, but not for enhanced expression of differentiation markers. Our study thus designates Mst1 as a Mpl ligand‐responsive signaling molecule that promotes induction of lineage‐specific cellular programming. J. Cell. Biochem. 76:44–60, 1999. © 1999 Wiley‐Liss, Inc. 相似文献
39.
Sleep plays an important role in the consolidation of memory. This has been most clearly shown in adults for procedural memory (i.e. skills and procedures) and declarative memory (e.g. recall of facts). The effects of sleep and memory are relatively unstudied in adolescents. Declarative memory is important in school performance and consequent social functioning in adolescents. This is the first study to specifically examine the effects of normal sleep on auditory declarative memory in an early adolescent sample. Given that the majority of adolescents do not obtain the recommended amount of sleep, it is critical to study the cognitive effects of normal sleep. Forty male and female normal, healthy adolescents between the ages of ten and fourteen years old were randomly assigned to sleep and no sleep conditions. Subjects were trained on a paired-associate declarative memory task and a control working memory task at 9am, and tested at night (12 hours later) without sleep. The same number of subjects was trained at 9pm and tested 9am following sleep. An increase of 20.6% in declarative memory, as measured by the number correct in a paired-associate test, following sleep was observed compared to the group which was tested at the same time interval without sleep (p<0.03). The performance on the control working memory task that involved encoding and memoranda manipulation was not affected by time of day or relationship to sleep. Declarative memory is significantly improved by sleep in a sample of normal adolescents. 相似文献
40.