首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   56篇
  2022年   9篇
  2021年   13篇
  2020年   7篇
  2019年   7篇
  2018年   8篇
  2017年   7篇
  2016年   24篇
  2015年   31篇
  2014年   35篇
  2013年   27篇
  2012年   51篇
  2011年   39篇
  2010年   26篇
  2009年   24篇
  2008年   35篇
  2007年   30篇
  2006年   19篇
  2005年   25篇
  2004年   18篇
  2003年   20篇
  2002年   15篇
  2001年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有498条查询结果,搜索用时 890 毫秒
91.
Ribonuclease H2 is the major nuclear enzyme degrading cellular RNA/DNA hybrids in eukaryotes and the sole nuclease known to be able to hydrolyze ribonucleotides misincorporated during genomic replication. Mutation in RNASEH2 causes Aicardi-Goutières syndrome, an auto-inflammatory disorder that may arise from nucleic acid byproducts generated during DNA replication. Here, we report the crystal structures of Archaeoglobus fulgidus RNase HII in complex with PCNA, and human PCNA bound to a C-terminal peptide of RNASEH2B. In the archaeal structure, three binding modes are observed as the enzyme rotates about a flexible hinge while anchored to PCNA by its PIP-box motif. PCNA binding promotes RNase HII activity in a hinge-dependent manner. It enhances both cleavage of ribonucleotides misincorporated in DNA duplexes, and the comprehensive hydrolysis of RNA primers formed during Okazaki fragment maturation. In addition, PCNA imposes strand specificity on enzyme function, and by localizing RNase H2 and not RNase H1 to nuclear replication foci in vivo it ensures that RNase H2 is the dominant RNase H activity during nuclear replication. Our findings provide insights into how type 2 RNase H activity is directed during genome replication and repair, and suggest a mechanism by which RNase H2 may suppress generation of immunostimulatory nucleic acids.  相似文献   
92.
We performed analyses of the molecular mechanisms involved in the regulation of phospholipase Cγ2 (PLCγ2). We identified several regions in the PLCγ-specific array, γSA, that contribute to autoinhibition in the basal state by occlusion of the catalytic domain. While the activation of PLCγ2 by Rac2 requires stable translocation to the membrane, the removal of the domains required for membrane translocation in the context of an enzyme with impaired autoinhibition generated constitutive, highly active PLC in cells. We further tested the possibility that the interaction of PLCγ2 with its activator protein Rac2 was sufficient for activation through the release of autoinhibition. However, we found that Rac2 binding in the absence of lipid surfaces was not able to activate PLCγ2. Together with other observations, these data suggest that an important consequence of Rac2 binding and translocation to the membrane is that membrane proximity, on its own or together with Rac2, has a role in the release of autoinhibition, resulting in interfacial activation.  相似文献   
93.
eNOS (endothelial nitric oxide synthase) contains a MAPK (mitogen-activated protein kinase)-binding site associated with a major eNOS control element. Purified ERK (extracellular-signal-regulated kinase) phosphorylates eNOS with a stoichiometry of 2–3 phosphates per eNOS monomer. Phosphorylation decreases NO synthesis and cytochrome c reductase activity. Three sites of phosphorylation were detected by MS. All sites matched the SP and TP MAPK (mitogen-activated protein kinase) phosphorylation motif. Ser602 lies at the N-terminal edge of the 42-residue eNOS AI (autoinhibitory) element. The pentabasic MAPK-binding site lies at the opposite end of the AI, and other critical regulatory features are between them. Thr46 and Ser58 are located in a flexible region associated with the N terminus of the oxygenase domain. In contrast with PKC (protein kinase C), phosphorylation by ERK did not significantly interfere with CaM (calmodulin) binding as analysed by optical biosensing. Instead, ERK phosphorylation favours a state in which FMN and FAD are in close association and prevents conformational changes that expose reduced FMN to acceptors. The close associations between control sites in a few regions of the molecule suggest that control of signal generation is modulated by multiple inputs interacting directly on the surface of eNOS via overlapping binding domains and tightly grouped targets.  相似文献   
94.
Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267) kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts.  相似文献   
95.
The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate‐Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell‐wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full‐length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/ .  相似文献   
96.
97.
We have assessed the numbers of potentially deleterious variants in the genomes of apparently healthy humans by using (1) low-coverage whole-genome sequence data from 179 individuals in the 1000 Genomes Pilot Project and (2) current predictions and databases of deleterious variants. Each individual carried 281–515 missense substitutions, 40–85 of which were homozygous, predicted to be highly damaging. They also carried 40–110 variants classified by the Human Gene Mutation Database (HGMD) as disease-causing mutations (DMs), 3–24 variants in the homozygous state, and many polymorphisms putatively associated with disease. Whereas many of these DMs are likely to represent disease-allele-annotation errors, between 0 and 8 DMs (0–1 homozygous) per individual are predicted to be highly damaging, and some of them provide information of medical relevance. These analyses emphasize the need for improved annotation of disease alleles both in mutation databases and in the primary literature; some HGMD mutation data have been recategorized on the basis of the present findings, an iterative process that is both necessary and ongoing. Our estimates of deleterious-allele numbers are likely to be subject to both overcounting and undercounting. However, our current best mean estimates of ∼400 damaging variants and ∼2 bona fide disease mutations per individual are likely to increase rather than decrease as sequencing studies ascertain rare variants more effectively and as additional disease alleles are discovered.  相似文献   
98.
Rattlesnakes typically strike and release adult rodent prey. Striking is followed by a sustained, high rate of tongue flicking that guides the snake to the envenomated, dead prey. Wild-caught rattlesnakes exhibited this chemosensory searching for about 2.5 h, and the present study demonstrated that long-term captive rattlesnakes (Crotalus atrox, C durissus, C horridus, C vegrandis, C unicolor) at three zoos did the same. Because these zoo-raised snakes had always been offered dead rodents and because the snakes had become accustomed to ingesting them without striking, the present snakes had rarely exercised their innate predatory repertoires. The duration of chemosensory searching in these snakes indicates that this important aspect of the predatory repertoire had not been degraded as a consequence of long-term captive husbandry.  相似文献   
99.
100.
Bottom‐up evolutionary approaches, including geographically explicit population genomic analyses, have the power to reveal the mechanistic basis of adaptation. Here, we conduct a population genomic analysis in the model legume, Medicago truncatula, to characterize population genetic structure and identify symbiosis‐related genes showing evidence of spatially variable selection. Using RAD‐seq, we generated over 26,000 SNPs from 191 accessions from within three regions of the native range in Europe. Results from STRUCTURE analysis identify five distinct genetic clusters with divisions that separate east and west regions in the Mediterranean basin. Much of the genetic variation is maintained within sampling sites, and there is evidence for isolation by distance. Extensive linkage disequilibrium was identified, particularly within populations. We conducted genetic outlier analysis with FST‐based genome scans and a Bayesian modeling approach (PCAdapt). There were 70 core outlier loci shared between these distinct methods with one clear candidate symbiosis related gene, DMI1. This work sets that stage for functional experiments to determine the important phenotypes that selection has acted upon and complementary efforts in rhizobium populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号