首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   56篇
  2022年   9篇
  2021年   13篇
  2020年   7篇
  2019年   7篇
  2018年   8篇
  2017年   7篇
  2016年   24篇
  2015年   31篇
  2014年   35篇
  2013年   27篇
  2012年   51篇
  2011年   39篇
  2010年   26篇
  2009年   24篇
  2008年   35篇
  2007年   30篇
  2006年   19篇
  2005年   25篇
  2004年   18篇
  2003年   20篇
  2002年   15篇
  2001年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有498条查询结果,搜索用时 218 毫秒
111.
Phospholipase Cγ isozymes (PLCγ1 and PLCγ2) have a crucial role in the regulation of a variety of cellular functions. Both enzymes have also been implicated in signaling events underlying aberrant cellular responses. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we have recently identified single point mutations in murine PLCγ2 that lead to spontaneous inflammation and autoimmunity. Here we describe further, mechanistic characterization of two gain-of-function mutations, D993G and Y495C, designated as ALI5 and ALI14. The residue Asp-993, mutated in ALI5, is a conserved residue in the catalytic domain of PLC enzymes. Analysis of PLCγ1 and PLCγ2 with point mutations of this residue showed that removal of the negative charge enhanced PLC activity in response to EGF stimulation or activation by Rac. Measurements of PLC activity in vitro and analysis of membrane binding have suggested that ALI5-type mutations facilitate membrane interactions without compromising substrate binding and hydrolysis. The residue mutated in ALI14 (Tyr-495) is within the spPH domain. Replacement of this residue had no effect on folding of the domain and enhanced Rac activation of PLCγ2 without increasing Rac binding. Importantly, the activation of the ALI14-PLCγ2 and corresponding PLCγ1 variants was enhanced in response to EGF stimulation and bypassed the requirement for phosphorylation of critical tyrosine residues. ALI5- and ALI14-type mutations affected basal activity only slightly; however, their combination resulted in a constitutively active PLC. Based on these data, we suggest that each mutation could compromise auto-inhibition in the inactive PLC, facilitating the activation process; in addition, ALI5-type mutations could enhance membrane interaction in the activated state.Phosphoinositide-specific phospholipase C (PLC)2 enzymes, comprising several families (PLCβ, γ, δ, ϵ, η, and ζ), have been established as crucial signaling molecules involved in regulation of a variety of cellular functions (14). PLC-catalyzed formation of the second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol, from phosphatidylinositol 4,5-bisphosphate (PIP2), constitutes one of the major cell signaling responses. These second messengers provide a common link from highly specific receptors for hormones, neurotransmitters, antigens, and growth factors to downstream, intracellular targets; thus, they contribute to regulation of biological functions as diverse as cell motility, fertilization, and sensory transduction. Despite this central role for PLC enzymes in signaling networks, the molecular details of their regulation and possible subversion of these regulatory mechanisms in disease remain poorly understood.Of two PLCγ enzymes, PLCγ1 is ubiquitously expressed and appears to regulate a multitude of cellular functions in many tissues. Plcg1-null mice die by embryonic day 9, highlighting the widespread importance of this enzyme (5). PLCγ1 is activated in response to growth factor stimulation; in addition, its function in T-cell responses has been extensively documented (1). PLCγ2, in contrast, is most highly expressed in cells of the hematopoietic system and plays a key role in regulation of the immune response. Consistent with this, Plcg2-null mice display defects in the functioning of B cells, platelets, mast cells, and natural killer cells (6).Both PLCγ enzymes have also been implicated in signaling events underlying aberrant cellular responses. PLCγ1 is critically involved in the regulation of cancer cell motility (711) while PLCγ2 has been implicated in deregulation of the immune responses resembling Btk-dependent X-linked agammaglobulinaemia and SLE disease in humans (1214). It has been suggested that, in cancer cells, PLCγ1 could function as a key, rate-limiting, common component involved in cell motility triggered by several growth factors and integrins (7). In some cancer cells, this increased motility could result from deregulation i.e. higher levels of expression of PLCγ1 (15, 16). The possibility that the activity of PLCγ could be up-regulated due to mutation has not yet been fully investigated in cancer. Previous studies of PLCγ2, however, have demonstrated the first gain-of-function mutation in a PLC molecule in the context of an organism, and shown that, in principle, PLC activity can be greatly enhanced by point mutations (13). Furthermore, this work has demonstrated that such a mutation is linked to a dramatic phenotypic disorder. By using a large scale ENU mutagenesis to discover new immune regulators, several mouse strains were generated with spontaneous autoimmune and inflammatory symptoms; two of these strains harbor a mutation in PLCγ2. In addition to the previously described ALI5 mutation (13) the ALI14 mutation has been identified very recently.3 Strikingly, the well-characterized ALI5 phenotype has shown that the mutation affects many cellular functions deregulated in Plcg2-null mice. Notably, while in Plcg2-null mice such responses are lacking, the ALI5 mutation resulted in their enhancement. In particular, further analyses of the ALI5 mutation in the context of signaling in B-cells have demonstrated that calcium responses to the crosslinking of the B-cell receptor were enhanced and prolonged resulting in enhanced deletion of B cells and autoreactivity (13).The domain organization of PLCγ enzymes is characterized by the insertion of a highly structured region (PLCγ-specific array, γSA) between the two halves of the TIM-barrel catalytic domain common to all PLCs. The γSA comprises a split PH (spPH) domain flanking two tandem SH2 domains and a SH3 domain (1). A distinct regulatory feature of PLCγ enzymes is that their activation is linked to an increase in phosphorylation of specific tyrosine residues (most notably within the γSA) by receptor and non-receptor tyrosine kinases (17, 18). Furthermore, multiple protein-protein interactions (mainly mediated by SH2 domains) also contribute to activation and have an important role in localizing PLCγ into protein complexes with different binding partners, depending on cell type and specific cellular compartments. One mode of activation that is specific for the PLCγ2 isozyme is direct binding to and activation by Rac. The interaction involves the spPH domain, and this activation mechanism does not require tyrosine phosphorylation (19, 20). In molecular terms, changes that lead to PLC activation in response to different input signals, or due to point mutations, are not well understood and require further studies.Here we describe further analysis of the two gain-of-function mutations, ALI5 and ALI14, obtained using ENU mutagenesis. These mutations map to different regions in PLCγ2, and we performed detailed analysis of these regions in both PLCγ isozymes. To characterize the molecular mechanism of gain-of-function, we combined studies in vitro and in different cellular signaling contexts. We have found that ALI5- and ALI14-type point mutations lead, by distinct mechanisms, to an enhancement of responses to a variety of input signals while their combination results in a constitutively active PLC enzyme.  相似文献   
112.

Background

MicroRNAs (miRNAs) are short, noncoding RNAs that regulate the expression of multiple target genes. Deregulation of miRNAs is common in human tumorigenesis. The miRNAs, MIR-15a/16-1, at chromosome band 13q14 are down-regulated in the majority of patients with chronic lymphocytic leukaemia (CLL).

Methodology/Principal Findings

We have measured the expression of MIR-15a/16-1, and 92 computationally-predicted MIR-15a/16-1 target genes in CLL patients and in normal controls. We identified 35 genes that are deregulated in CLL patients, 5 of which appear to be specific targets of the MIR-15a/16-1 cluster. These targets included 2 genes (BAZ2A and RNF41) that were significantly up-regulated (p<0.05) and 3 genes (RASSF5, MKK3 and LRIG1) that were significantly down-regulated (p<0.05) in CLL patients with down-regulated MIR-15a/16-1 expression.

Significance

The genes identified here as being subject to MIR-15a/16-1 regulation could represent direct or indirect targets of these miRNAs. Many of these are good biological candidates for involvement in tumorigenesis and as such, may be important in the aetiology of CLL.  相似文献   
113.
Molecular studies of population divergence and speciation across the Oriental Region are sparse, despite the region’s high biodiversity and extensive Pliocene and Pleistocene environmental change. A molecular phylogenetic study of the Neocellia Series of Anopheles mosquitoes was undertaken to identify patterns of diversification across the Oriental Region and to infer the role of Pleistocene and Pliocene climatic change. A robust phylogeny was constructed using CO2 and ND5 mitochondrial genes and ITS2 and D3 nuclear ribosomal markers. Bayesian analysis of mitochondrial genes was used to date divergence events. The repeated contraction and expansion of forest habitat resulting from Pleistocene climatic fluctuations appears to have had a substantial impact on intraspecific diversification, but has not driven speciation within this group. Primarily early to mid Pliocene speciation was detected within the Annularis Group, whereas speciation within the Maculatus and Jamesii Groups occurred during the mid and late Pliocene. Both allopatric divergence driven by late Pliocene environmental changes and ecological adaptation, involving altitudinal replacement and seasonality, are likely to have influenced speciation in the Maculatus Group.  相似文献   
114.
Amino Acids - The transamidating activity of tissue transglutaminase is regulated by the ligands calcium and GTP, via conformational changes which facilitate or interfere with interaction with the...  相似文献   
115.
Diversity patterns of herbivores have been related to climate, host plant traits, host plant distribution and evolutionary relationships individually. However, few studies have assessed the relative contributions of a range of variables to explain these diversity patterns across large geographical and host plant species gradients. Here we assess the relative influence that climate and host plant traits have on endophagous species (leaf miners and plant gallers) diversity across a suite of host species from a genus that is widely distributed and morphologically variable. Forty-six species of Acacia were sampled to encapsulate the diversity of species across four taxonomic sections and a range of habitats along a 950 km climatic gradient: from subtropical forest habitats to semi-arid habitats. Plant traits, climatic variables, leaf miner and plant galler diversity were all quantified on each plant species. In total, 97 leaf mining species and 84 plant galling species were recorded from all host plants. Factors that best explained leaf miner richness across the climatic gradient (using AIC model selection) included specific leaf area (SLA), foliage thickness and mean annual rainfall. The factor that best explained plant galler richness across the climatic gradient was C:N ratio. In terms of the influence of plant and climatic traits on species composition, leaf miner assemblages were best explained by SLA, foliage thickness, mean minimum temperature and mean annual rainfall, whilst plant gall assemblages were explained by C:N ratio, %P, foliage thickness, mean minimum temperature and mean annual rainfall. This work is the first to assess diversity and structure across a broad environmental gradient and a wide range of potential key climatic and plant trait determinants simultaneously. Such methods provide key insights into endophage diversity and provide a solid basis for assessing their responses to a changing climate.  相似文献   
116.
It is now more than 20 years since both Council of Europe Convention ETS123 and EU Directive 86/609/EEC were introduced, to promote the implementation of the Three Rs in animal experimentation and to provide guidance on animal housing and care. It might therefore be expected that reports of the implementation of the Three Rs in animal research papers would have increased during this period. In order to test this hypothesis, a literature survey of animal-based research was conducted. A randomly-selected sample from 16 high-profile medical journals, of original research papers arising from European institutions that featured experiments which involved either mice or primates, were identified for the years 1986 and 2006 (Total sample = 250 papers). Each paper was scored out of 10 for the incidence of reporting on the implementation of Three Rs-related factors corresponding to Replacement (justification of non-use of non-animal methods), Reduction (statistical analysis of the number of animals needed) and Refinement (housing aspects, i.e. increased cage size, social housing, enrichment of cage environment and food; and procedural aspects, i.e. the use of anaesthesia, analgesia, humane endpoints, and training for procedures with positive reinforcement). There was no significant increase in overall reporting score over time, for either mouse or primate research. By 2006, mouse research papers scored an average of 0 out of a possible 10, and primate research papers scored an average of 1.5. This review provides systematic evidence that animal research is still not properly reported, and supports the call within the scientific community for action to be taken by journals to update their policies.  相似文献   
117.
In eukaryotic membrane trafficking, emergent protein folding pathways dictated by the proteostasis network (the 'PN') in each cell type are linked to the coat protein complex II (COPII) system that initiates transport through the exocytic pathway. These coupled pathways direct the transit of protein cargo from the endoplasmic reticulum (ER) to diverse subcellular and extracellular destinations. Understanding how the COPII system selectively manages the trafficking of distinct folded states of nascent cargo (comprising one-third of the proteins synthesized by the eukaryotic genome) in close cooperation with the PN remains a formidable challenge to the field. Whereas the PN may contain a thousand component, the minimal COPII coat components that drive all vesicle budding from the ER include Sar1 (a GTPase), Sec12 (a guanine nucleotide exchange factor), Sec23-Sec24 complexes (protein cargo selectors) and the Sec13-Sec31 complex (that functions as a protein cargo collector and as a polymeric lattice generator to promote vesicle budding). A wealth of data suggests a hierarchical role of the PN and COPII components in coupling protein folding with recruitment and assembly of vesicle coats on the ER. In this minireview, we focus on insights recently gained from the study of inherited human disease states of the COPII machinery. We explore the relevance of the COPII system to human biology in the context of its inherent link with the remarkably flexible folding capacity of the PN in each cell type and in response to the environment. The pharmacological manipulation of this coupled system has important therapeutic implications for restoration of function in human disease.  相似文献   
118.

Background

Since 2002, active surveillance programmes have detected numerous atypical scrapie (AS) and classical scrapie cases (CS) in French sheep with almost all the PrP genotypes. The aim of this study was 1) to quantify the genetic risk of AS in French sheep and to compare it with the risk of CS, 2) to quantify the risk of AS associated with the increase of the ARR allele frequency as a result of the current genetic breeding programme against CS.

Methods

We obtained genotypes at codons 136, 141, 154 and 171 of the PRNP gene for representative samples of 248 AS and 245 CS cases. We used a random sample of 3,317 scrapie negative animals genotyped at codons 136, 154 and 171 and we made inferences on the position 141 by multiple imputations, using external data. To estimate the risk associated with PrP genotypes, we fitted multivariate logistic regression models and we estimated the prevalence of AS for the different genotypes. Then, we used the risk of AS estimated for the ALRR-ALRR genotype to analyse the risk of detecting an AS case in a flock homogenous for this genotype.

Results

Genotypes most at risk for AS were those including an AFRQ or ALHQ allele while genotypes including a VLRQ allele were less commonly associated with AS. Compared to ALRQ-ALRQ, the ALRR-ALRR genotype was significantly at risk for AS and was very significantly protective for CS. The prevalence of AS among ALRR-ALRR animals was 0.6‰ and was not different from the prevalence in the general population.

Conclusion

In conclusion, further selection of ALRR-ALRR animals will not result in an overall increase of AS prevalence in the French sheep population although this genotype is clearly susceptible to AS. However the probability of detecting AS cases in flocks participating in genetic breeding programme against CS should be considered.  相似文献   
119.
Protein kinase A anchoring proteins (AKAPs) provide the backbone for targeted multimolecular signaling complexes that serve to localize the activities of cAMP. Evidence is accumulating of direct associations between AKAPs and specific adenylyl cyclase (AC) isoforms to facilitate the actions of protein kinase A on cAMP production. It happens that some of the AC isoforms (AC1 and AC5/6) that bind specific AKAPs are regulated by submicromolar shifts in intracellular Ca2+. However, whether AKAPs play a role in the control of AC activity by Ca2+ is unknown. Using a combination of co-immunoprecipitation and high resolution live cell imaging techniques, we reveal an association of the Ca2+-stimulable AC8 with AKAP79/150 that limits the sensitivity of AC8 to intracellular Ca2+ events. This functional interaction between AKAP79/150 and AC8 was observed in HEK293 cells overexpressing the two signaling molecules. Similar findings were made in pancreatic insulin-secreting cells and cultured hippocampal neurons that endogenously express AKAP79/150 and AC8, which suggests important physiological implications for this protein-protein interaction with respect to Ca2+-stimulated cAMP production.  相似文献   
120.
This study focuses upon three chemokines, namely CCL5, CXCL10 and CCL3, which are potential novel therapeutic targets in arthritis. The aim of the study was to analyse the expression and production of these three chemokines within the joints of children with juvenile idiopathic arthritis (JIA) of the oligoarticular and polyarticular subtypes. All three of these chemokines are highly expressed at the level of mRNA, with the most significant increase in mRNA levels being demonstrated for CCL5 when compared with matched peripheral blood samples and controls. We show that high levels of all three chemokines are present in synovial fluid of children with JIA. We investigate the major source of CCL5 from inflammatory synovial cells, which we show to be CD8+ T cells. This CD8+ synovial T cell population has an unexpected phenotype that has not been described previously, being CCR7- yet predominantly CD28+ and CD45RA-. These cells contain high levels of stored intracellular CCL5, and rapid release of CCL5 takes place on T cell stimulation, without requiring new protein synthesis. In addition, we demonstrate that CCL5 is present in synovial biopsies from these patients, in particular on the endothelium of small and medium sized vessels. We believe this to be the first in depth analysis of these mediators of inflammation in JIA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号