首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   662篇
  免费   28篇
  国内免费   2篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   9篇
  2017年   6篇
  2016年   15篇
  2015年   26篇
  2014年   33篇
  2013年   35篇
  2012年   38篇
  2011年   39篇
  2010年   19篇
  2009年   24篇
  2008年   36篇
  2007年   38篇
  2006年   42篇
  2005年   51篇
  2004年   47篇
  2003年   42篇
  2002年   37篇
  2001年   9篇
  2000年   16篇
  1999年   6篇
  1998年   10篇
  1997年   8篇
  1996年   5篇
  1995年   6篇
  1994年   1篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1980年   6篇
  1979年   5篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1967年   2篇
排序方式: 共有692条查询结果,搜索用时 15 毫秒
241.
The reaction of rat liver microsomes with Fe(3+), ADP and NADPH was examined using EPR, HPLC-EPR and HPLC-EPR-MS combined use of spin trapping technique. A prominent EPR spectrum (alpha(N) = 1.58 mT and alpha(H)beta = 0.26 mT) was observed in the complete reaction mixture. The EPR spectrum was hardly observed for the complete reaction mixture without rat liver microsomes. The radicals appear to be derived from microsomal components. The EPR spectrum was also hardly observed in the absence of Fe(3+). Addition of some iron chelators such as EDTA, citrate and ADP resulted in the dramatic change in the EPR intensity. Iron ions seem to be essential for this reaction. For the complete reaction mixture with boiled microsomes, a weak EPR spectrum was observed, suggesting that enzymes participate in the reaction. Five peaks were separated on the HPLC-EPR elution profile of the complete reaction mixture of rat liver microsomes with ADP, Fe(3+) and NADPH. The retention times of the peaks 1 to 5 were 19.4, 22.5, 27.3, 29.8 and 31.4 min, respectively. To identify the radical adducts, HPLC-EPR-MS analyses were performed for the three prominent peaks. The HPLC-EPR-MS analyses showed that a new radical adduct, 4-POBN/1-hydroxypentyl radical, in addition to 4-POBN/ethyl radical adducts, forms in a reaction mixture of rat liver microsomes with ADP, Fe(3+) and NADPH.  相似文献   
242.
We have demonstrated that adrenomedullin (AM) protects against angiotensin II (ANG II)-induced cardiovascular damage through the attenuation of increased oxidative stress observed in AM-deficient mice. However, the mechanism(s) that underlie this activity remain unclear. To address this question, we investigated the effect of AM on ANG II-stimulated reactive oxygen species (ROS) production in cultured rat aortic vascular smooth muscle cells (VSMCs). ANG II markedly increased ROS production through activation of NADPH oxidase. This effect was significantly attenuated by AM in a concentration-dependent manner. This effect was mimicked by dibutyl-cAMP and blocked by pretreatment with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89), a protein kinase A inhibitor, and CGRP(8-37), an AM/CGRP receptor antagonist. This inhibitory effect of AM was also lost following the expression of a constitutively active Src. Moreover, AM intersected ANG II signaling by inducing COOH-terminal Src kinase (Csk) activation that, in turn, inhibits Src activation. These data, for the first time, demonstrate that AM attenuates the ANG II-induced increase in ROS in VSMCs via activation of Csk, thereby inhibiting Src activity.  相似文献   
243.
244.
Osada N  Hashimoto K  Hirai M  Kusuda J 《Gene》2007,392(1-2):151-156
  相似文献   
245.
A research cruise was conducted in the eastern Indian Ocean off west Sumatra, Indonesia, in June 2003 to learn about the spawning and larval ecology of the tropical freshwater eels of the genus Anguilla in the region. A total of 43 anguillid leptocephali were collected during the cruise and they were genetically identified as 41 Anguilla bicolor bicolor, 1 Anguilla marmorata, and 1 Anguilla interioris. A. bicolor bicolor leptocephali were 44.1–55.5 mm TL and most of them were at the fully grown stage. Reexamination of the historical data of Jespersen (1942) also suggested a relatively low abundance of small size leptocephali (<40 mm) of this species off west Sumatra. Although the study area has long been considered to be a spawning site of A. bicolor bicolor, the distributions of leptocephali from the two surveys and the patterns of ocean currents in the region suggest the possibility that the main spawning area of this species is located farther offshore.  相似文献   
246.
247.
The purpose of this study was to test whether some phylogenetic groups of natural marine bacteria have unique buoyant densities that allow them to be separated by the density-dependent cell sorting (DDCS) method. We first concentrated a natural bacterial assemblage to collect sufficient numbers of cells. They were separated into three fractions by DDCS, and the community structure in each was clarified by fluorescence in situ hybridization. The cells of Archaea tended to appear in the high-density fraction, whereas those of Cytophaga-Flavobacterium-Bacteroides were in the low-density fraction. We also calculated the sedimentation velocities of three typical marine bacteria (low density, middle density, and high density) using their buoyant density. The sedimentation velocities were approximately 10, 20, and 30 μm h−1; these velocities have ecological implications when the heterogeneity of bacteria is considered at a microscale. To our knowledge, this is the first report on the buoyant density of natural marine bacteria.  相似文献   
248.
Motile cells transduce environmental chemical signals into mechanical forces to achieve properly controlled migration. This signal–force transduction is thought to require regulated mechanical coupling between actin filaments (F-actins), which undergo retrograde flow at the cellular leading edge, and cell adhesions via linker “clutch” molecules. However, the molecular machinery mediating this regulatory coupling remains unclear. Here we show that the F-actin binding molecule cortactin directly interacts with a clutch molecule, shootin1, in axonal growth cones, thereby mediating the linkage between F-actin retrograde flow and cell adhesions through L1-CAM. Shootin1–cortactin interaction was enhanced by shootin1 phosphorylation by Pak1, which is activated by the axonal chemoattractant netrin-1. We provide evidence that shootin1–cortactin interaction participates in netrin-1–induced F-actin adhesion coupling and in the promotion of traction forces for axon outgrowth. Under cell signaling, this regulatory F-actin adhesion coupling in growth cones cooperates with actin polymerization for efficient cellular motility.  相似文献   
249.
The catalytic reaction of copper amine oxidase proceeds through a ping-pong mechanism comprising two half-reactions. In the initial half-reaction, the substrate amine reduces the Tyr-derived cofactor, topa quinone (TPQ), to an aminoresorcinol form (TPQamr) that is in equilibrium with a semiquinone radical (TPQsq) via an intramolecular electron transfer to the active-site copper. We have analyzed this reductive half-reaction in crystals of the copper amine oxidase from Arthrobacter globiformis. Anerobic soaking of the crystals with an amine substrate shifted the equilibrium toward TPQsq in an “on-copper” conformation, in which the 4-OH group ligated axially to the copper center, which was probably reduced to Cu(I). When the crystals were soaked with substrate in the presence of halide ions, which act as uncompetitive and noncompetitive inhibitors with respect to the amine substrate and dioxygen, respectively, the equilibrium in the crystals shifted toward the “off-copper” conformation of TPQamr. The halide ion was bound to the axial position of the copper center, thereby preventing TPQamr from adopting the on-copper conformation. Furthermore, transient kinetic analyses in the presence of viscogen (glycerol) revealed that only the rate constant in the step of TPQamr/TPQsq interconversion is markedly affected by the viscogen, which probably perturbs the conformational change. These findings unequivocally demonstrate that TPQ undergoes large conformational changes during the reductive half-reaction.  相似文献   
250.
F1-ATPase is a powerful rotary molecular motor that can rotate an object several hundred times as large as the motor itself against the viscous friction of water. Forced reverse rotation has been shown to lead to ATP synthesis, implying that the mechanical work against the motor’s high torque can be converted into the chemical energy of ATP. The minimal composition of the motor protein is α3β3γ subunits, where the central rotor subunit γ turns inside a stator cylinder made of alternately arranged α3β3 subunits using the energy derived from ATP hydrolysis. The rotor consists of an axle, a coiled coil of the amino- and carboxyl-terminal α-helices of γ, which deeply penetrates the stator cylinder, and a globular protrusion that juts out from the stator. Previous work has shown that, for a thermophilic F1, significant portions of the axle can be truncated and the motor still rotates a submicron sized bead duplex, indicating generation of up to half the wild-type (WT) torque. Here, we inquire if any specific interactions between the stator and the rest of the rotor are needed for the generation of a sizable torque. We truncated the protruding portion of the rotor and replaced part of the remaining axle residues such that every residue of the rotor has been deleted or replaced in this or previous truncation mutants. This protrusionless construct showed an unloaded rotary speed about a quarter of the WT, and generated one-third to one-half of the WT torque. No residue-specific interactions are needed for this much performance. F1 is so designed that the basic rotor-stator interactions for torque generation and control of catalysis rely solely upon the shape and size of the rotor at very low resolution. Additional tailored interactions augment the torque to allow ATP synthesis under physiological conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号