首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1657篇
  免费   93篇
  国内免费   1篇
  1751篇
  2022年   6篇
  2021年   15篇
  2020年   9篇
  2019年   9篇
  2018年   17篇
  2017年   18篇
  2016年   29篇
  2015年   38篇
  2014年   44篇
  2013年   81篇
  2012年   85篇
  2011年   92篇
  2010年   54篇
  2009年   65篇
  2008年   93篇
  2007年   108篇
  2006年   85篇
  2005年   86篇
  2004年   102篇
  2003年   87篇
  2002年   96篇
  2001年   61篇
  2000年   44篇
  1999年   37篇
  1998年   17篇
  1997年   25篇
  1996年   13篇
  1995年   21篇
  1994年   13篇
  1993年   20篇
  1992年   45篇
  1991年   37篇
  1990年   24篇
  1989年   25篇
  1988年   29篇
  1987年   15篇
  1986年   17篇
  1985年   17篇
  1984年   7篇
  1983年   8篇
  1982年   7篇
  1981年   6篇
  1980年   4篇
  1979年   10篇
  1978年   4篇
  1974年   3篇
  1973年   10篇
  1972年   3篇
  1970年   2篇
  1966年   2篇
排序方式: 共有1751条查询结果,搜索用时 15 毫秒
71.
Intact osteoactivin, a novel type I membrane glycoprotein, were shed at a dibasic motif in the juxtamembrane region in C2C12 myoblasts. Extracellular fragments were secreted into the culture media by a putative metalloprotease. Extracellular fragments of osteoactivin, but not control protein, induced matrix metalloprotease-3 (MMP-3) expression in NIH-3T3 fibroblasts. Epidermal growth factor (ERK) kinase inhibitors inhibited the osteoactivin-mediated MMP-3 expression, whereas the extracellular fragment of osteoactivin activated ERK1/2 and p38 in the mitogen-activated protein kinase pathway. Our results suggest that the extracellular fragments of osteoactivin produced by shedding act as a growth factor to induce MMP-3 expression via the ERK pathway in fibroblasts.  相似文献   
72.
Unique among fibroblast growth factors (FGFs), FGF19, -21, and -23 act in an endocrine fashion to regulate energy, bile acid, glucose, lipid, phosphate, and vitamin D homeostasis. These FGFs require the presence of Klotho/betaKlotho in their target tissues. Here, we present the crystal structures of FGF19 alone and FGF23 in complex with sucrose octasulfate, a disaccharide chemically related to heparin. The conformation of the heparin-binding region between beta strands 10 and 12 in FGF19 and FGF23 diverges completely from the common conformation adopted by paracrine-acting FGFs. A cleft between this region and the beta1-beta2 loop, the other heparin-binding region, precludes direct interaction between heparin/heparan sulfate and backbone atoms of FGF19/23. This reduces the heparin-binding affinity of these ligands and confers endocrine function. Klotho/betaKlotho have evolved as a compensatory mechanism for the poor ability of heparin/heparan sulfate to promote binding of FGF19, -21, and -23 to their cognate receptors.  相似文献   
73.
The NET [noradrenaline (norepinephrine) transporter], an Na+/Cl--dependent neurotransmitter transporter, has several isoforms produced by alternative splicing in the C-terminal region, each differing in expression and function. We characterized the two major isoforms of human NET, hNET1, which has seven C-terminal amino acids encoded by exon 15, and hNET2, which has 18 amino acids encoded by exon 16, by site-directed mutagenesis in combination with NE (noradrenaline) uptake assays and cell surface biotinylation. Mutants lacking one third or more of the 24 amino acids encoded by exon 14 exhibited neither cell surface expression nor NE uptake activity, with the exception of the mutant lacking the last eight amino acids of hNET2, whose expression and uptake resembled that of the WT (wild-type). A triple alanine replacement of a candidate motif (ENE) in this region mimicked the influences of the truncation. Deletion of either the last three or another four amino acids of the C-terminus encoded by exon 15 in hNET1 reduced the cell surface expression and NE uptake, whereas deletion of all seven residues reduced the transport activity but did not affect the cell surface expression. Replacement of RRR, an endoplasmic reticulum retention motif, by alanine residues in the C-terminus of hNET2 resulted in a similar expression and function compared with the WT, while partly recovering the effects of the mutation of ENE. These findings suggest that in addition to the function of the C-terminus, the common proximal region encoded by exon 14 regulates the functional expression of splice variants, such as hNET1 and hNET2.  相似文献   
74.
75.
PC 12h pheochromocytoma cells were subcutaneously transplanted into rat. We found the transplanted tumors accumulated some fucogangliosides associated with PC 12 cells. These gangliosides were isolated and purified by DEAE-Sephadex A-25 and Iatrobeads column chromatographies. Their structures were determined by fast atom bombardment mass spectrometry, proton nuclear magnetic resonance spectrometry, permethylation study, and sequential degradation using various exoglycosidases and mild acid hydrolysis. Two tumor-associated fucogangliosides were found to possess the blood group B determinant as follows: G6: IV2Fuc alpha, IV3Gal alpha, II3NeuAc, GgOse4Cer; G11: IV2Fuc alpha, IV3Gal alpha, II3 (NeuAc)2, GgOse4Cer. A ganglioside with the similar structure as ganglioside G6 was isolated from rat hepatoma cells (Holmes, E.H., and Hakomori, S-I. (1982) J. Biol. Chem. 257, 7698-7703). However, ganglioside G11 has not previously been reported in the literature. These fucogangliosides reacted with the monoclonal antibody prepared by immunizing mice with PC 12h cells. Other fucogangliosides were also found to accumulate in the transplanted tumor tissues. They were identified as fucosyl-GM1 and fucosyl-GDlb. These fucogangliosides did not react with the monoclonal antibody against PC 12h cells.  相似文献   
76.
Methionine γ‐lyse (MGL) catalyzes the α, γ‐elimination of l ‐methionine and its derivatives as well as the α, β‐elimination of l ‐cysteine and its derivatives to produce α‐keto acids, volatile thiols, and ammonia. The reaction mechanism of MGL has been characterized by enzymological studies using several site‐directed mutants. The Pseudomonas putida MGL C116H mutant showed drastically reduced degradation activity toward methionine while retaining activity toward homocysteine. To understand the underlying mechanism and to discern the subtle differences between these substrates, we analyzed the crystal structures of the reaction intermediates. The complex formed between the C116H mutant and methionine demonstrated that a loop structure (Ala51–Asn64) in the adjacent subunit of the catalytic dimer cannot approach the cofactor pyridoxal 5′‐phosphate (PLP) because His116 disrupts the interaction of Asp241 with Lys240, and the liberated side chain of Lys240 causes steric hindrance with this loop. Conversely, in the complex formed between C116H mutant and homocysteine, the thiol moiety of the substrate conjugated with PLP offsets the imidazole ring of His116 via a water molecule, disrupting the interaction of His116 and Asp241 and restoring the interaction of Asp241 with Lys240. These structural data suggest that the Cys116 to His mutation renders the enzyme inactive toward the original substrate, but activity is restored when the substrate is homocysteine due to substrate‐assisted catalysis.  相似文献   
77.
The contractile activity of prostatic stromal cells contributes to symptoms of benign prostatic hyperplasia (BPH). However, the mechanisms for this contraction have not yet been fully elucidated. In this study, we investigated the role of protein kinase C (PKC) in prostatic contraction by measuring the isometric tension development of cultured human prostatic stromal cells (CHPSCs) derived from BPH patients. Fresh human BPH tissue was used only in a Western blot analysis. A ring preparation made of CHPSCs and collagen gel could develop an isometric tension during activation with various agonists. Phorbol 12,13 dibutyrate (PDBu), a PKC activator, induced a relaxation. A Western blot analysis revealed the expression of PKC-potentiated protein phosphatase-1 inhibitory protein (CPI-17) in both CHPSCs and fresh human BPH tissue to be much lower than that in the rabbit aorta. When CPI-17 was over-expressed, PDBu induced a large contraction, but the agonist-induced contraction did not become larger than expected. In alpha-toxin permeabilized preparations, PDBu induced a relaxation in control CHPSCs, while it induced a contraction at a constant [Ca2+]i in CPI-17 over-expressing CHPSCs. These results indicated that the activation of PKC in CHPSCs induces a relaxation probably due to low expression level of CPI-17 and also that the PKC-CPI-17 pathway does not appear to play a major role in the agonist-induced contraction even when CPI-17 was over-expressed.  相似文献   
78.
Reversible modification of Atg8 with phosphatidylethanolamine is crucial for autophagy, the bulk degradation system conserved in eukaryotic cells. Atg4 is a novel cysteine protease that processes and deconjugates Atg8. Herein, we report the crystal structure of human Atg4B (HsAtg4B) at 1.9-A resolution. Despite no obvious sequence homology with known proteases, the structure of HsAtg4B shows a classical papain-like fold. In addition to the papain fold region, HsAtg4B has a small alpha/beta-fold domain. This domain is thought to be the binding site for Atg8 homologs. The active site cleft of HsAtg4B is masked by a loop (residues 259-262), implying a conformational change upon substrate binding. The structure and in vitro mutational analyses provide the basis for the specificity and catalysis of HsAtg4B. This will enable the design of Atg4-specific inhibitors that block autophagy.  相似文献   
79.
Orexins-A and B, also called hypocretins-1 and 2, respectively, are neuropeptides that regulate feeding and sleep-wakefulness by binding to two orphan G protein-coupled receptors named orexin-1 (OX(1)R) and orexin-2 (OX(2)R). The sequences and functions of orexins-A and B are similar to each other, but the high sequence homology (68%) is limited in their C-terminal half regions (residues 15-33). The sequence of the N-terminal half region of orexin-A (residues 1-14), containing two disulfide bonds, is very different from that of orexin-B. The structure of orexin-A was determined using two-dimensional homonuclear and (15)N and (13)C natural abundance heteronuclear NMR experiments. Orexin-A had a compact conformation in the N-terminal half region, which contained a short helix (III:Cys6-Gln9) and was fixed by the two disulfide bonds, and a helix-turn-helix conformation (I:Leu16-Ala23 and II:Asn25-Thr32) in the remaining C-terminal half region. The C-terminal half region had both hydrophobic and hydrophilic residues, which existed on separate surfaces to provide an amphipathic character in helices I and II. The nine residues on the hydrophobic surface are also well conserved in orexin-B, and it was reported that the substitution of each of them with alanine resulted in a significant drop in the functional potency at the receptors. Therefore, we suggest that they form the surface responsible for the main hydrophobic interaction with the receptors. On the other hand, the residues on the hydrophilic surface, together with the hydrophilic residues in the N-terminal half region that form a cluster, are known to make only small contributions to the binding to the receptors through similar alanine-scan experiments. However, since our structure of orexin-A showed that large conformational and electrostatical differences between orexins-A and B were rather concentrated in the N-terminal half regions, we suggest that the region of orexin-A is important for the preference for orexin-A of OX(1)R.  相似文献   
80.
Mitochondria are descendants of the endosymbiotic α-proteobacterium most likely engulfed by the ancestral eukaryotic cells, and the proto-mitochondrial genome should have been severely streamlined in terms of both genome size and gene repertoire. In addition, mitochondrial (mt) sequence data indicated that frequent intron gain/loss events contributed to shaping the modern mt genome organizations, resulting in the homologous introns being shared between two distantly related mt genomes. Unfortunately, the bulk of mt sequence data currently available are of phylogenetically restricted lineages, i.e., metazoans, fungi, and land plants, and are insufficient to elucidate the entire picture of intron evolution in mt genomes. In this work, we sequenced a 12 kbp-fragment of the mt genome of the katablepharid Leucocryptos marina. Among nine protein-coding genes included in the mt genome fragment, the genes encoding cytochrome b and cytochrome c oxidase subunit I (cob and cox1) were interrupted by group I introns. We further identified that the cob and cox1 introns host open reading frames for homing endonucleases (HEs) belonging to distantly related superfamilies. Phylogenetic analyses recovered an affinity between the HE in the Leucocryptos cob intron and two green algal HEs, and that between the HE in the Leucocryptos cox1 intron and a fungal HE, suggesting that the Leucocryptos cob and cox1 introns possess distinct evolutionary origins. Although the current intron (and intronic HE) data are insufficient to infer how the homologous introns were distributed to distantly related mt genomes, the results presented here successfully expanded the evolutionary dynamism of group I introns in mt genomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号