首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2785篇
  免费   160篇
  2022年   12篇
  2021年   30篇
  2020年   18篇
  2019年   23篇
  2018年   44篇
  2017年   30篇
  2016年   38篇
  2015年   78篇
  2014年   75篇
  2013年   146篇
  2012年   119篇
  2011年   140篇
  2010年   74篇
  2009年   90篇
  2008年   161篇
  2007年   157篇
  2006年   126篇
  2005年   108篇
  2004年   129篇
  2003年   123篇
  2002年   148篇
  2001年   81篇
  2000年   105篇
  1999年   68篇
  1998年   33篇
  1997年   32篇
  1996年   31篇
  1995年   32篇
  1994年   20篇
  1993年   27篇
  1992年   71篇
  1991年   59篇
  1990年   49篇
  1989年   66篇
  1988年   65篇
  1987年   47篇
  1986年   32篇
  1985年   30篇
  1984年   19篇
  1983年   16篇
  1982年   20篇
  1981年   10篇
  1979年   12篇
  1978年   14篇
  1977年   12篇
  1976年   16篇
  1975年   10篇
  1974年   12篇
  1973年   14篇
  1969年   18篇
排序方式: 共有2945条查询结果,搜索用时 15 毫秒
991.

Background  

Immuno-cell therapy using activated lymphocytes (ALs) and/or dendritic cells (DCs) is considered one of the less toxic supportive therapies compared with conventional chemotherapy and radiotherapy, especially for the treatment for advanced cancers. To improve the efficacy of immuno-cell therapy for such cancer, clinical data were analyzed in this preliminary study.  相似文献   
992.
993.
Otake S  Endo D  Park MK 《Gene》2011,488(1-2):23-34
Zing finger AN1-type domain 3 (ZFAND3), also known as testis expressed sequence 27 (Tex27), is a gene found in the mouse testis, but its physiological function is unknown. We identified the full-length sequences of two isoforms (short and long) of ZFAND3 cDNA from Japanese quail and leopard gecko. This is the first cloning of avian and reptilian ZFAND3 cDNA. The two isoforms are generated by alternative polyadenylation in the 3'UTR and have the same ORF sequences encoding identical proteins. There were highly conserved regions in the 3'UTR of the long form near the polyadenylation sites from mammals to amphibians, suggesting that the features for determining the stability of mRNA or translation efficiency differ between isoforms. The deduced amino acid sequence of ZFAND3 has two putative zinc finger domains, an A20-like zinc finger domain at the N-terminal and an AN1-like zinc finger domain at the C-terminal. Sequence analysis revealed an additional exon in the genomic structures of the avian and reptilian ZFAND3 genes which is not present in mammals, amphibians, or fish, and this exon produces additional amino acid residues in the A20-like zinc finger domain. Expression analysis in Japanese quail revealed that the expression level of ZFAND3 mRNA was high in not only the testis but also the ovary, and ZFAND3 mRNA was expressed in both spermatides of the testis and oocytes of the ovary. While the short form mRNA was mainly expressed in the testis, the expression level of the long form mRNA was high in the ovary. These results suggest that ZFAND3 has physiological functions related to germ cell maturation and regulatory mechanisms that differ between the testis and ovary.  相似文献   
994.
995.
Macroautophagy is a catabolic process by which cytosolic components are sequestered by double membrane vesicles called autophagosomes and sorted to the lysosomes/vacuoles to be degraded. Saccharomyces cerevisiae has adapted this mechanism for constitutive transport of the specific vacuolar hydrolases aminopeptidase I (Ape1) and α-mannosidase (Ams1); this process is called the cytoplasm to vacuole targeting (Cvt) pathway. The precursor form of Ape1 self-assembles into an aggregate-like structure in the cytosol that is then recognized by Atg19 in a propeptide-dependent manner. The interaction between Atg19 and autophagosome-forming machineries allows selective packaging of the Ape1-Atg19 complex by the autophagosome-like Cvt vesicle. Ams1 also forms oligomers and utilizes the Ape1 transport system by interacting with Atg19. Although the mechanism of selective transport of the Cvt cargoes has been well studied, it is unclear whether proteins other than Ape1 and Ams1 are transported via the Cvt pathway. We describe here that aspartyl aminopeptidase (Yhr113w/Ape4) is the third Cvt cargo, which is similar in primary structure and subunit organization to Ape1. Ape4 has no propeptide, and it does not self-assemble into aggregates. However, it binds to Atg19 in a site distinct from the Ape1- and Ams1-binding sites, allowing it to "piggyback" on the Ape1 transport system. In growing conditions, a small portion of Ape4 localizes in the vacuole, but its vacuolar transport is accelerated by nutrient starvation, and it stably resides in the vacuole lumen. We propose that the cytosolic Ape4 is redistributed to the vacuole when yeast cells need more active vacuolar degradation.  相似文献   
996.
Binding of class I MHC molecules (MHCI) to an inhibitory receptor, PIR-B, expressed on B cells and myeloid cells provides constitutive cellular inhibition, thus ensuring peripheral tolerance. Recent unexpected findings pointed to a novel inhibitory role of PIR-B in neurite regeneration through binding to three axonal outgrowth inhibitors of myelin, including Nogo. Thus, it becomes interesting to determine whether the actions of the inhibitory myelin proteins and MHCI could coexist independently or be mutually exclusive as to the PIR-B-mediated immune and neural cell inhibition. Here, we present data supporting the competition of Nogo- and MHCI-mediated inhibition where they coexist. Kinetic analyses of Nogo and MHCI binding to the whole or a part of the recombinant PIR-B ectodomain revealed that PIR-B binds with higher affinity to Nogo than MHCI and that the MHCI binding only occurred with the N-terminal domains of PIR-B, whereas Nogo binding occurred with either the N- or C-terminal ectodomains. Importantly, kinetic tests indicated that the binding to PIR-B of Nogo and MHCI was competitive. Both endogenous and exogenous Nogo intensified the PIR-B-mediated suppression of interleukin-6 release from lipopolysaccharide-stimulated wild-type, but not PIR-B-deficient, cultured mast cells, indicating that PIR-B mediates Nogo-induced inhibition. Thus, we propose a novel mechanism by which PIR-B-mediated regulation is achieved differentially but competitively via MHCI and Nogo in cells of the immune system.  相似文献   
997.
998.
We screened a library of human single-transmembrane proteins (sTMPs), produced by a cell-free system, using a luminescent assay to identify those that can be cleaved by caspase-8 (CASP8). Of the 407 sTMPs screened, only the interleukin-21 receptor (IL21R), vezatin (VEZT), and carbonic anhydrase XIV were cleaved at Asp344, Asp655 and Asp53, respectively. We confirmed that IL21R and VEZT were also cleaved in apoptotic HeLa cells with the cleavage sites. Interestingly, IL21R was cleaved within 30 min after apoptosis induction. Furthermore the CASP8-cleaved form of IL21R did not induce phosphorylation at Tyr705 of STAT3. Our results suggest that the interleukin-21 signaling cascade is negatively regulated by CASP8.  相似文献   
999.
Cellular oxygen consumption is a determinant of intracellular oxygen levels. Because of the high demand of mitochondrial respiration during insulin secretion, pancreatic β-cells consume large amounts of oxygen in a short time period. We examined the effect of insulin secretion on cellular oxygen tension in vitro. We confirmed that Western blotting of pimonidazole adduct was more sensitive than immunostaining for detection of cellular hypoxia in vitro and in vivo. The islets of the diabetic mice but not those of normal mice were hypoxic, especially when a high dose of glucose was loaded. In MIN6 cells, a pancreatic β-cell line, pimonidazole adduct formation and stabilization of hypoxia-inducible factor-1α (HIF-1α) were detected under mildly hypoxic conditions. Inhibition of respiration rescued the cells from becoming hypoxic. Glucose stimulation decreased cellular oxygen levels in parallel with increased insulin secretion and mitochondrial respiration. The cellular hypoxia by glucose stimulation was also observed in the isolated islets from mice. The MIN6 cells overexpressing HIF-1α were resistant to becoming hypoxic after glucose stimulation. Thus, glucose-stimulated β-cells can become hypoxic by oxygen consumption, especially when the oxygen supply is impaired.  相似文献   
1000.
Synaptic loss, which strongly correlates with the decline of cognitive function, is one of the pathological hallmarks of Alzheimer disease. N-cadherin is a cell adhesion molecule essential for synaptic contact and is involved in the intracellular signaling pathway at the synapse. Here we report that the functional disruption of N-cadherin-mediated cell contact activated p38 MAPK in murine primary neurons, followed by neuronal death. We further observed that treatment with Aβ(42) decreased cellular N-cadherin expression through NMDA receptors accompanied by increased phosphorylation of both p38 MAPK and Tau in murine primary neurons. Moreover, expression levels of phosphorylated p38 MAPK were negatively correlated with that of N-cadherin in human brains. Proteomic analysis of human brains identified a novel interaction between N-cadherin and JNK-associated leucine zipper protein (JLP), a scaffolding protein involved in the p38 MAPK signaling pathway. We demonstrated that N-cadherin expression had an inhibitory effect on JLP-mediated p38 MAPK signal activation by decreasing the interaction between JLP and p38 MAPK in COS7 cells. Also, this study demonstrated a novel physical and functional association between N-cadherin and p38 MAPK and suggested neuroprotective roles of cadherin-based synaptic contact. The dissociation of N-cadherin-mediated synaptic contact by Aβ may underlie the pathological basis of neurodegeneration such as neuronal death, synaptic loss, and Tau phosphorylation in Alzheimer disease brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号