首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   847篇
  免费   37篇
  884篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   6篇
  2019年   6篇
  2018年   13篇
  2017年   8篇
  2016年   19篇
  2015年   24篇
  2014年   19篇
  2013年   33篇
  2012年   51篇
  2011年   36篇
  2010年   25篇
  2009年   26篇
  2008年   45篇
  2007年   43篇
  2006年   58篇
  2005年   38篇
  2004年   63篇
  2003年   48篇
  2002年   60篇
  2001年   18篇
  2000年   23篇
  1999年   23篇
  1998年   18篇
  1997年   9篇
  1996年   9篇
  1995年   16篇
  1994年   11篇
  1993年   5篇
  1992年   13篇
  1991年   12篇
  1990年   8篇
  1989年   10篇
  1988年   6篇
  1987年   9篇
  1986年   10篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1981年   3篇
  1978年   3篇
  1977年   3篇
  1975年   3篇
  1973年   3篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
  1966年   4篇
排序方式: 共有884条查询结果,搜索用时 15 毫秒
131.
Motif-programming is a method for creating artificial proteins by combining functional peptide motifs in a combinatorial manner. This method is particularly well suited for developing liaison molecules that interface between cells and inorganic materials. Here we describe our creation of artificial proteins through the programming of two motifs, a natural cell attachment motif (RGD) and an artificial Ti-binding motif (minTBP-1). The created proteins were found to reversibly bind Ti and to bind MC3T3-E1 osteoblast-like cells. Moreover, although the interaction with Ti was not covalent, the proteins recapitulated several functions of fibronectin, and thus, could serve as an artificial ECM on Ti materials. Because this motif-programming system could be easily extended to create artificial proteins having other biological functions and material specificities, it should be highly useful for application to tissue engineering and regenerative medicine.  相似文献   
132.
In a previous study, we demonstrated that exposure to an antifouling biocide, copper pyrithione (CuPT), early during life induced vertebral deformity in the larvae of a marine fish, the mummichog (Fundulus heteroclitus). Skeletal deformities may be caused by inhibition by of acetylcholiensterase (AChE) activity, and to elucidate the mechanism underlying the CuPT-associated vertebral deformity, we first examined whether CuPT, zinc pyrithione (ZnPT), and their degradation products could inhibit AChE activity in the fish. Two of the degradation products, 2,2′-dipyridyldisulfide [(PS)2] and 2,2′-dithiobispyridine-N-oxide [(PT)2], but neither CuPT nor ZnPT, exhibited prominent AChE-inhibiting activity. Secondly, thin-layer chromatography revealed that mummichog hepatic microsomes metabolized CuPT to produce (PS)2 in a microsome-dependent manner. The AChE inhibition induced in CuPT-exposed fish is likely due to (PS)2 that was produced through metabolism of acquired CuPT. (PS)2 may cause therefore skeletal deformity in CuPT-exposed fish by means of its neuromuscular blocking properties, through a mechanism similar to that proposed for animals exposed to organophosphorous pesticides.  相似文献   
133.
Summary Poly(3-hydroxybutyrate) [P(3HB)] depolymerase was purified from a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)]-degrading fungus, Paecilomyces lilacinus F4-5 by hydrophobic and ion exchange column chromatography, and showed a molecular mass of 45 kDa. The optimum temperature and pH of the P(3HB) depolymerase were 50 °C and 7.0, respectively. The enzyme was stable for at least 30 min at temperatures below 40 °C, while the activity abruptly decreased over 55 °C. Enzymatic P(3HB-co-3HV) degradation showed a similar degradation pattern to that of film overlaid by fungal hyphae. It reflects that the fungal degradation of P(3HB-co-3HV) in soil is mainly caused by extracellular depolymerases.  相似文献   
134.
The methanolic extract and its alkaloid fraction from the rhizomes of Nuphar pumilum showed cytotoxic effects on human leukemia cell (U937), mouse melanoma cell (B16F10), and human fibroblast (HT1080). Dimeric sesquiterpene thioalkaloids with the 6-hydroxyl group (6-hydroxythiobinupharidine, 6,6'-dihydroxythiobinupharidine, 6-hydroxythionuphlutine B) showed substantial cytotoxic activity at a concentration of 10 microM, but dimeric sesquiterpene thioalkaloids lacking the 6-hydroxyl group (thiobinupharidine, thionuphlutine B, 6'-hydroxythionuphlutine B, neothiobinupharidine, thionuphlutine B beta-sulfoxide, and neothiobinupharidine beta-sulfoxide) and monomeric sesquiterpene alkaloids (nupharidine, 7-epideoxynupharidine, and nupharolutine) showed weak activity. Next, apoptosis-inducing activity of a principal active constituent, 6-hydroxythiobinupharidine, on U937 was examined using morphological observation and DNA fragmentation assay (TUNEL method). Apoptosis of U937 was immediately observed within 1 h after treatment of 6-hydroxythiobinupharidine at 2.5-10 microM.  相似文献   
135.
The Indian subcontinent has an origin geologically different from Eurasia, but many terrestrial animal and plant species on it have congeneric or sister species in other parts of Asia, especially in the Southeast. This faunal and floral similarity between India and Southeast Asia is explained by either of the two biogeographic scenarios, ‘into-India’ or ‘out-of-India’. Phylogenies based on complete mitochondrial genomes and five nuclear genes were undertaken for ricefishes (Adrianichthyidae) to examine which of these two biogeographic scenarios fits better. We found that Oryzias setnai, the only adrianichthyid distributed in and endemic to the Western Ghats, a mountain range running parallel to the western coast of the Indian subcontinent, is sister to all other adrianichthyids from eastern India and Southeast–East Asia. Divergence time estimates and ancestral area reconstructions reveal that this western Indian species diverged in the late Mesozoic during the northward drift of the Indian subcontinent. These findings indicate that adrianichthyids dispersed eastward ‘out-of-India’ after the collision of the Indian subcontinent with Eurasia, and subsequently diversified in Southeast–East Asia. A review of geographic distributions of ‘out-of-India’ taxa reveals that they may have largely fuelled or modified the biodiversity of Eurasia.  相似文献   
136.
A large-scale mutagenesis screen was performed in Medaka to identify genes acting in diverse developmental processes. Mutations were identified in homozygous F3 progeny derived from ENU-treated founder males. In addition to the morphological inspection of live embryos, other approaches were used to detect abnormalities in organogenesis and in specific cellular processes, including germ cell migration, nerve tract formation, sensory organ differentiation and DNA repair. Among 2031 embryonic lethal mutations identified, 312 causing defects in organogenesis were selected for further analyses. From these, 126 mutations were characterized genetically and assigned to 105 genes. The similarity of the development of Medaka and zebrafish facilitated the comparison of mutant phenotypes, which indicated that many mutations in Medaka cause unique phenotypes so far unrecorded in zebrafish. Even when mutations of the two fish species cause a similar phenotype such as one-eyed-pinhead or parachute, more genes were found in Medaka than in zebrafish that produced the same phenotype when mutated. These observations suggest that many Medaka mutants represent new genes and, therefore, are important complements to the collection of zebrafish mutants that have proven so valuable for exploring genomic function in development.  相似文献   
137.
We screened for mutations affecting retinotectal axonal projection in Medaka, Oryzias latipes. In wild-type Medaka embryos, all the axons of retinal ganglion cells (RGCs) project to the contralateral tectum, such that the topological relationship of the retinal field is maintained. We labeled RGC axons using DiI/DiO at the nasodorsal and temporoventral positions of the retina, and screened for mutations affecting the pattern of stereotypic projections to the tectum. By screening 184 mutagenized haploid genomes, seven mutations in five genes causing defects in axonal pathfinding were identified, whereas mutations affecting the topographic projection of RGC axons were not found. The mutants were grouped into two classes according to their phenotypes. In mutants of Class I, a subpopulation of the RGC axons branched out either immediately after leaving the eye or after reaching the midline, and this axonal subpopulation projected to the ipsilateral tectum. In mutants of Class II, subpopulations of RGC axons branched out after crossing the midline and projected aberrantly. These mutants will provide clues to understanding the functions of genes essential for axonal pathfinding, which may be conserved or partly divergent among vertebrates.  相似文献   
138.
The forebrain, consisting of the telencephalon and diencephalon, is essential for processing sensory information. To genetically dissect formation of the forebrain in vertebrates, we carried out a systematic screen for mutations affecting morphogenesis of the forebrain in Medaka. Thirty-three mutations defining 25 genes affecting the morphological development of the forebrain were grouped into two classes. Class 1 mutants commonly showing a decrease in forebrain size, were further divided into subclasses 1A to 1D. Class 1A mutation (1 gene) caused an early defect evidenced by the lack of bf1 expression, Class 1B mutations (6 genes) patterning defects revealed by the aberrant expression of regional marker genes, Class 1C mutation (1 gene) a defect in a later stage, and Class 1D (3 genes) a midline defect analogous to the zebrafish one-eyed pinhead mutation. Class 2 mutations caused morphological abnormalities in the forebrain without considerably affecting its size, Class 2A mutations (6 genes) caused abnormalities in the development of the ventricle, Class 2B mutations (2 genes) severely affected the anterior commissure, and Class 2C (6 genes) mutations resulted in a unique forebrain morphology. Many of these mutants showed the compromised sonic hedgehog expression in the zona-limitans-intrathalamica (zli), arguing for the importance of this structure as a secondary signaling center. These mutants should provide important clues to the elucidation of the molecular mechanisms underlying forebrain development, and shed new light on phylogenically conserved and divergent functions in the developmental process.  相似文献   
139.
The usefulness of 2,6-dimethylphenylalanine (Dmp) as a Phe surrogate in two opioid peptides, dermorphin (DM) and deltorphin II (DT), was investigated. Compared to DM, [L-Dmp(3)]DM (1) showed a 170-fold increase in mu affinity and only a 4-fold increase in delta affinity, resulting in a 40-fold improvement in mu receptor selectivity. Compared to DT, [L-Dmp(3)]DT (3) showed a 22-fold increase in delta affinity and somewhat of a loss in mu affinity, and consequently a marked (75-fold) improvement in delta receptor selectivity. The D-Dmp replacement, however, resulted in a great loss in receptor selectivity in each of the peptides. The specific receptor interactions of 1 and 3 were confirmed by in vitro bioassays. Analogues 1 and 3 seem to be useful as pharmacological tools for the study of opioid systems.  相似文献   
140.
We assessed brain abnormalities in rats exposed prenatally to radiation (X-rays) using magnetic resonance imaging (MRI) and histological experiments. Pregnant rats were divided into 4 groups: the control group (n = 3) and 3 groups that were exposed to different radiation doses (0.5, 1.0, or 1.5 Gy; n = 3 each). Brain abnormalities were assessed in 32 neonatal male rats (8 per group). Ex vivo T2-weighted imaging and diffusion tensor imaging (DTI) were performed using 11.7-T MRI. The expression of markers of myelin production (Kluver–Barrera staining, KB), nonpyramidal cells (calbindin-D28k staining, CaBP), and pyramidal cells (staining of the nonphosphorylated heavy-chain neurofilament SMI-32) were histologically evaluated. Decreased brain volume, increased ventricle volume, and thinner cortices were observed by MRI in irradiated rats. However, no abnormalities in the cortical 6-layered structure were observed via KB staining in radiation-exposed rats. The DTI color-coded map revealed a dose-dependent reduction in the anisotropic signal (vertical direction), which did not represent reduced numbers of pyramidal cells; rather, it indicated a signal reduction relative to the vertical direction because of low nerve cell density in the entire cortex. We conclude that DTI and histological experiments are useful tools for assessing cortical and hippocampal abnormalities after prenatal exposure to radiation in rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号