首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   898篇
  免费   41篇
  939篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   8篇
  2019年   11篇
  2018年   6篇
  2017年   5篇
  2016年   18篇
  2015年   19篇
  2014年   16篇
  2013年   29篇
  2012年   42篇
  2011年   48篇
  2010年   27篇
  2009年   40篇
  2008年   52篇
  2007年   50篇
  2006年   64篇
  2005年   60篇
  2004年   67篇
  2003年   47篇
  2002年   62篇
  2001年   13篇
  2000年   11篇
  1999年   18篇
  1998年   20篇
  1997年   13篇
  1996年   10篇
  1995年   14篇
  1994年   15篇
  1993年   9篇
  1992年   16篇
  1991年   14篇
  1990年   9篇
  1989年   12篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1976年   3篇
  1975年   5篇
  1974年   4篇
  1973年   4篇
  1970年   3篇
  1968年   2篇
  1967年   5篇
排序方式: 共有939条查询结果,搜索用时 15 毫秒
71.
72.
The Rho subfamily of the Rho small G protein family (Rho) regulates formation of stress fibers and focal adhesions in many types of cultured cells. In moving cells, dynamic and coordinate disassembly and reassembly of stress fibers and focal adhesions are observed, but the precise mechanisms in the regulation of these processes are poorly understood. We previously showed that 12-O-tetradecanoylphorbol-13-acetate (TPA) first induced disassembly of stress fibers and focal adhesions followed by their reassembly in MDCK cells. The reassembled stress fibers showed radial-like morphology that was apparently different from the original. We analyzed here the mechanisms of these TPA-induced processes. Rho inactivation and activation were necessary for the TPA-induced disassembly and reassembly, respectively, of stress fibers and focal adhesions. Both inactivation and activation of the Rac subfamily of the Rho family (Rac) inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly. Moreover, microinjection or transient expression of Rab GDI, a regulator of all the Rab small G protein family members, inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly, indicating that, furthermore, activation of some Rab family members is necessary for their TPA-induced reassembly. Of the Rab family members, at least Rab5 activation was necessary for the TPA-induced reassembly of stress fibers and focal adhesions. The TPA-induced, small G protein-mediated reorganization of stress fibers and focal adhesions was closely related to the TPA-induced cell motility. These results indicate that the Rho and Rab family members coordinately regulate the TPA-induced reorganization of stress fibers and focal adhesions that may cause cell motility.  相似文献   
73.
Endothelin-1 (ET-1) is a potent vasoconstrictorpeptide, which also potentiates contractions to norepinephrine in humaninternal mammary and coronary vessels. Exercise causes a redistribution of blood flow, i.e., the increase in working muscles that is partly attributable to a decrease in visceral blood flow. We hypothesized thatexercise causes a tissue-specific increase in ET-1 expression ininternal organs. We studied whether exercise affects expression ofpreproET-1 mRNA in the kidneys and lungs. The rats performed treadmillrunning (0% grade) for 45 min at a speed of 25 m/min. The plasmaconcentrations of ET-1, epinephrine, and norepinephrine were greater inthe exercise rats than in the sedentary control rats. The expression ofpreproET-1 mRNA in the kidneys was markedly higher in the exercise ratsthan in the sedentary control rats, whereas that in the lungs did notdiffer between the two groups. Therefore, the present study provides apossibility that the exercise-induced increase in production of ET-1 inthe kidneys causes vasoconstriction and hence decreases blood flow inthe kidneys through its direct vasoconstrictive action and/orits indirect effect of enhancing vasoconstrictions to norepinephrine.

  相似文献   
74.
During severe sepsis, several immunological defense mechanisms initiate a cascade of inflammatory events leading to multiorgan failure, including septic encephalopathy and ultimately death. Endothelin-1 (ET-1) has recently been investigated in different cerebral pathologies. Some reports suggest the involvement of ET-1 in sepsis. However, no study to date has reported the alterations in expression of the genes encoding preproET-1 and ET receptors in the frontal cortex of the septic brain. Male Sprague-Dawley (SD) rats 8 weeks of age were administered either saline or 15 mg/kg lipopolysaccharide (LPS) at different time points (1, 3, 6, and 10 hrs). Rats that did not receive LPS were considered to be controls. The rats were sacrificed with ether, and the brain tissues were harvested. Systolic and diastolic blood pressure decreased 1 hr after LPS administration and then gradually returned to normal, without any change in the heart rate. We confirmed the induction of endotoxemia in the brains of SD rats by measuring the expression of nitric oxide synthase (NOS) mRNA induced in the cerebrum. The expression of inducible NOS (iNOS) mRNA in the brains of SD rat after LPS administration was 30-fold higher than that in the brains of control rats. mRNA expression of preproET-1 in the frontal cortex of SD rats after LPS administration was 2-fold higher than that in control rats. A time-dependent increase in the expression of the gene encoding the ET(A) receptor (vasoconstrictive property) after LPS administration was observed in SD rat brain, whereas expression of the gene encoding the ET(B) receptor (vasodilatatory property) showed an initial upregulation and then gradually decreased as sepsis progressed. In conclusion, we report for the first time that expressions of the genes encoding ET-1 and ET receptors are altered in the endotoxemic brain and that these alterations are time-dependent in SD rats. The alterations in the ET system in brain tissue observed in the present study may contribute to the understanding of the pathophysiological changes in the endotoxemic brain.  相似文献   
75.
Pyrrospirones A and B have been isolated from unpolished rice cultures of the endophytic fungus Neonectria ramulariae Wollenw KS-246. Their absolute stereostructures (1 and 2) were elucidated through spectroscopic methods using 1D and 2D NMR techniques and chemical transformations, including the modified Mosher's method. The compounds exhibited cytotoxicity and induced apoptosis in human promyelocytic leukemia HL-60 cells.  相似文献   
76.
Cell wall metabolism and cell wall modification are very important processes that bacteria use to adjust to various environmental conditions. One of the main modifications is deacetylation of peptidoglycan. The polysaccharide deacetylase homologue, Bacillus subtilis YjeA (renamed PdaC), was characterized and found to be a unique deacetylase. The pdaC deletion mutant was sensitive to lysozyme treatment, indicating that PdaC acts as a deacetylase. The purified recombinant and truncated PdaC from Escherichia coli deacetylated B. subtilis peptidoglycan and its polymer, (-GlcNAc-MurNAc[-L-Ala-D-Glu]-)(n). Surprisingly, RP-HPLC and ESI-MS/MS analyses showed that the enzyme deacetylates N-acetylmuramic acid (MurNAc) not GlcNAc from the polymer. Contrary to Streptococcus pneumoniae PgdA, which shows high amino acid sequence similarity with PdaC and is a zinc-dependent GlcNAc deacetylase toward peptidoglycan, there was less dependence on zinc ion for deacetylation of peptidoglycan by PdaC than other metal ions (Mn(2+), Mg(2+), Ca(2+)). The kinetic values of the activity toward B. subtilis peptidoglycan were K(m) = 4.8 mM and k(cat) = 0.32 s(-1). PdaC also deacetylated N-acetylglucosamine (GlcNAc) oligomers with a K(m) = 12.3 mM and k(cat) = 0.24 s(-1) toward GlcNAc(4). Therefore, PdaC has GlcNAc deacetylase activity toward GlcNAc oligomers and MurNAc deacetylase activity toward B. subtilis peptidoglycan.  相似文献   
77.
New World monkeys exhibit prominent colour vision variation due to allelic polymorphism of the long‐to‐middle wavelength (L/M) opsin gene. The known spectral variation of L/M opsins in primates is broadly determined by amino acid composition at three sites: 180, 277 and 285 (the ‘three‐sites’ rule). However, two L/M opsin alleles found in the black‐handed spider monkeys (Ateles geoffroyi) are known exceptions, presumably due to novel mutations. The spectral separation of the two L/M photopigments is 1.5 times greater than expected based on the ‘three‐sites’ rule. Yet the consequence of this for the visual ecology of the species is unknown, as is the evolutionary mechanism by which spectral shift was achieved. In this study, we first examine L/M opsins of two other Atelinae species, the long‐haired spider monkeys (A. belzebuth) and the common woolly monkeys (Lagothrix lagotricha). By a series of site‐directed mutagenesis, we show that a mutation Y213D (tyrosine to aspartic acid at site 213) in the ancestral opsin of the two alleles enabled N294K, which occurred in one allele of the ateline ancestor and increased the spectral separation between the two alleles. Second, by modelling the chromaticity of dietary fruits and background leaves in a natural habitat of spider monkeys, we demonstrate that chromatic discrimination of fruit from leaves is significantly enhanced by these mutations. This evolutionary renovation of L/M opsin polymorphism in atelines illustrates a previously unappreciated dynamism of opsin genes in shaping primate colour vision.  相似文献   
78.
We generated transgenic tobacco plants with high levels of fructose-1,6-bisphosphatase expressing cyanobacterialfructose-1,6-/sedoheptulose-1,7-bisphosphatase in the cytosol. At ambient CO2 levels (360 ppm), growth, photosynthetic activity, and fresh weight were unchanged but the sucrose/hexose/starch ratio was slightly altered in the transgenic plants compared with wild-type plants. At elevated CO2 levels (1200 ppm), lateral shoot, leaf number, and fresh weight were significantly increased in the transgenic plants. Photosynthetic activity was also increased. Hexose accumulated in the upper leaves in the wild-type plants, while sucrose and starch accumulated in the lower leaves and lateral shoots in the transgenic plants. These findings suggest that cytosolic fructose-1,6-bisphosphatase contributes to the efficient conversion of hexose into sucrose, and that the change in carbon partitioning affects photosynthetic capacity and morphogenesis at elevated CO2 levels.  相似文献   
79.
80.
We have prepared polyclonal antibodies againstXenopus20S proteasomes. The antibodies cross-react with several proteins that are common to 20S and 26S proteasomes and with at least two proteins that are unique to 26S proteasomes. The antibodies were used to analyze changes in the components of proteasomes during oocyte maturation and early development ofXenopus laevis.A novel protein with a molecular weight of 48 kDa, p48, was clearly detected in immature oocytes, but was found at very low levels in mature oocytes and ovulated eggs. p48 was reduced to low levels during oocyte maturation, after maturation-promoting factor was activated. The amount of p48 in eggs remained low during early embryonic development, but increased again after the midblastula transition. These results show that at least one component of 26S proteasomes changes during oocyte maturation and early development and suggest that alterations in proteasome function may be important for the regulation of developmental events, such as the rapid cell cycles, of the early embryo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号