首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1179篇
  免费   75篇
  国内免费   1篇
  2021年   12篇
  2019年   10篇
  2018年   13篇
  2017年   9篇
  2016年   19篇
  2015年   30篇
  2014年   36篇
  2013年   47篇
  2012年   53篇
  2011年   54篇
  2010年   26篇
  2009年   33篇
  2008年   56篇
  2007年   52篇
  2006年   46篇
  2005年   63篇
  2004年   59篇
  2003年   53篇
  2002年   55篇
  2001年   53篇
  2000年   40篇
  1999年   25篇
  1998年   19篇
  1997年   17篇
  1996年   9篇
  1995年   14篇
  1994年   9篇
  1993年   13篇
  1992年   29篇
  1991年   26篇
  1990年   33篇
  1989年   33篇
  1988年   26篇
  1987年   20篇
  1986年   22篇
  1985年   21篇
  1984年   18篇
  1983年   14篇
  1982年   9篇
  1981年   3篇
  1979年   10篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1975年   6篇
  1974年   9篇
  1969年   6篇
  1968年   4篇
  1966年   3篇
  1965年   3篇
排序方式: 共有1255条查询结果,搜索用时 15 毫秒
131.
The molecular weight of purified aldehyde oxidase from Pseudomonas stutzeri IFO12695 was estimated to be 160 kDa by a gel filtration method. SDS-PAGE showed that the enzyme consisted of three non-identical subunits with molecular weights of 18, 38, and 83 kDa. The enzyme exhibited an absorption spectrum with maxima at 277, 325, 365, 415, 450, 480, and 550 nm and possessed molybdenum, CMP, iron, sulfur, and FAD as its cofactors, indicating that it belonged to the xanthine oxidase family. A variety of aliphatic and aromatic aldehydes were oxidized; and among them n-hexylaldehyde gave the most rapidly action. When 10 mM formaldehyde was treated with the aldehyde oxidase in the presence of catalase for 240 min, the formaldehyde concentration was reduced to 0.8 mM, suggesting this enzyme might be effective for the removal of formaldehyde contained in wastewater.  相似文献   
132.
133.
Macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL) induce the differentiation of bone marrow macrophages (BMMs) into osteoclasts. To delineate mechanisms involved, the effect of M-CSF on the production of osteoprotegerin (OPG), decoy receptor of RANKL, in BMMs was investigated. Mouse bone marrow cells were cultured with M-CSF for 4 days and adherent cells formed were used as BMMs. BMMs were cultured with or without M-CSF, and analyzed for expression of OPG and receptor activator of NF-kappaB (RANK; receptor for RANKL) mRNAs by real-time polymerase chain reaction and secretion of OPG by enzyme-linked immunosorbent assay. BMMs expressed macrophage markers, CD115 (c-fms), Mac-1 and F4/80, and showed phagocytotic activity. In addition, BMMs expressed OPG mRNA and secreted OPG into medium. M-CSF inhibited both the OPG mRNA expression and the OPG secretion dose-dependently and reversibly. The expression of RANK mRNA was not significantly affected by M-CSF. The results showed that M-CSF suppresses the OPG production in BMMs, which may increase the sensitivity of BMMs to RANKL.  相似文献   
134.
135.
Huntingtin is a ubiquitously expressed cytoplasmic protein encoded by the Huntington disease (HD) gene, in which a CAG expansion induces an autosomal dominant progressive neurodegenerative disorder; however, its biological function has not been completely elucidated. Here, we report for the first time that short interfering RNA (siRNA)-mediated inhibition of endogenous Hdh (a mouse homologue of huntingtin) gene expression induced an aberrant configuration of the endoplasmic reticulum (ER) network in vitro. Studies using immunofluorescence microscopy with several ER markers revealed that the ER network appeared to be congregated in various types of cell lines transfected with siRNA directed against Hdh, but not with other siRNAs so far tested. Other subcellular organelles and structures, including the nucleus, Golgi apparatus, mitochondria, lysosomes, microtubules, actin cytoskeletons, cytoplasm, lipid rafts, and plasma membrane, exhibited normal configurations. Western blot analysis of cellular prion protein (PrP(C)) revealed normal glycosylation, which is a simple marker of post-translational modification in the ER and Golgi compartments, and immunofluorescence microscopy detected no altered subcellular distribution of PrP(C) in the post-ER compartments. Further investigation is required to determine whether the distorted ER network, i.e., loss of the huntingtin function, participates in the development of HD.  相似文献   
136.
Gut hormone gastric inhibitory polypeptide (GIP) stimulates insulin secretion from pancreatic β-cells upon ingestion of nutrients. Inhibition of GIP signaling prevents the onset of obesity and consequent insulin resistance induced by high-fat diet. In this study, we investigated the role of GIP in accumulation of triglycerides into adipocytes and in fat oxidation peripherally using insulin receptor substrate (IRS)-1-deficient mice and revealed that IRS-1−/−GIPR−/− mice exhibited both reduced adiposity and ameliorated insulin resistance. Furthermore, increased gene expression of CD36 and UCP2 in liver, and increased expression and enzyme activity of 3-hydroxyacyl-CoA dehydrogenase in skeletal muscle of IRS-1−/−GIPR−/− mice might contribute to the lower respiratory quotient and the higher fat oxidation in light phase. These results suggest that GIP plays a crucial role in switching from fat oxidation to fat accumulation under the diminished insulin action as a potential target for secondary prevention of insulin resistance.  相似文献   
137.
Nabedryk E  Paddock ML  Okamura MY  Breton J 《Biochemistry》2005,44(44):14519-14527
In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (Q(B)) site. Several nearby residues are important for both binding and redox chemistry involved in the light-induced conversion from Q(B) to quinol Q(B)H(2). Ser-L223 is one of the functionally important residues located near Q(B). To obtain information on the interaction between Ser-L223 and Q(B) and Q(B)(-), isotope-edited Q(B)(-)/Q(B) FTIR difference spectra were measured in a mutant RC in which Ser-L223 is replaced with Ala and compared to the native RC. The isotope-edited IR fingerprint spectra for the C=O [see text] and C=C [see text] modes of Q(B) (Q(B)(-)) in the mutant are essentially the same as those of the native RC. These findings indicate that highly equivalent interactions of Q(B) and Q(B)(-) with the protein occur in both native and mutant RCs. The simplest explanation of these results is that Ser-L223 is not hydrogen bonded to Q(B) or Q(B)(-) but presumably forms a hydrogen bond to a nearby acid group, preferentially Asp-L213. The rotation of the Ser OH proton from Asp-L213 to Q(B)(-) is expected to be an important step in the proton transfer to the reduced quinone. In addition, the reduced quinone remains firmly bound, indicating that other distinct hydrogen bonds are more important for stabilizing Q(B)(-). Implications on the design features of the Q(B) binding site are discussed.  相似文献   
138.
Emerging evidence has suggested environmental factors as causative agents in the pathogenesis of primary biliary cirrhosis (PBC). We have hypothesized that in PBC the lipoyl domain of the immunodominant E2 component of pyruvate dehydrogenase (PDC-E2) is replaced by a chemical xenobiotic mimic, which is sufficient to break self-tolerance. To address this hypothesis, based upon our quantitative structure-activity relationship data, a total of 107 potential xenobiotic mimics were coupled to the lysine residue of the immunodominant 15 amino acid peptide of the PDC-E2 inner lipoyl domain and spotted on microarray slides. Sera from patients with PBC (n = 47), primary sclerosing cholangitis (n = 15), and healthy volunteers (n = 20) were assayed for Ig reactivity. PBC sera were subsequently absorbed with native lipoylated PDC-E2 peptide or a xenobiotically modified PDC-E2 peptide, and the remaining reactivity analyzed. Of the 107 xenobiotics, 33 had a significantly higher IgG reactivity against PBC sera compared with control sera. In addition, 9 of those 33 compounds were more reactive than the native lipoylated peptide. Following absorption, 8 of the 9 compounds demonstrated cross-reactivity with lipoic acid. One compound, 2-octynoic acid, was unique in both its quantitative structure-activity relationship analysis and reactivity. PBC patient sera demonstrated high Ig reactivity against 2-octynoic acid-PDC-E2 peptide. Not only does 2-octynoic acid have the potential to modify PDC-E2 in vivo but importantly it was/is widely used in the environment including perfumes, lipstick, and many common food flavorings.  相似文献   
139.
In the reaction center from the photosynthetic purple bacterium Rhodobacter sphaeroides, light energy is rapidly converted to chemical energy through coupled electron-proton transfer to a buried quinone molecule Q(B). Involved in the proton uptake steps are carboxylic acids, which have characteristic infrared vibrations that are observable using light-induced Fourier transform infrared (FTIR) difference spectroscopy. Upon formation, Q(B)(-) induces protonation of Glu-L212, located within 5 A of Q(B), resulting in a IR signal at 1728 cm(-1). However, no other IR signal is observed within the classic absorption range of protonated carboxylic acids (1770-1700 cm(-1)). In particular, no signal for Asp-L213 is found despite its juxtaposition to Q(B) and importance for proton uptake on the second electron-transfer step. In an attempt to uncover the reason behind this lack of signal, the microscopic electrostatic environment in the vicinity of Q(B) was modified by interchanging Asp and Glu at the L213 and L212 positions. The Q(B)(-)/Q(B) FTIR spectrum of the Asp-L212/Glu-L213 swap mutant in the 1770-1700 cm(-1) range shows several distinct new signals, which are sensitive to (1)H/(2)H isotopic exchange, indicating that the reduction of Q(B) results in the change of the protonation state of several carboxylic acids. The new bands at 1752 and 1747 cm(-1) were assigned to an increase of protonation in response to Q(B) reduction of Glu-L213 and Asp-L212, respectively, based on the effect of replacing them with their amine analogues. Since other carboxylic acid signals were observed, it is concluded that the swap mutations at L212 and L213 affect a cluster of carboxylic acids larger than the L212/L213 acid pair. Implications for the native reaction center are discussed.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号