首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1242篇
  免费   94篇
  1336篇
  2021年   12篇
  2020年   8篇
  2019年   8篇
  2018年   17篇
  2017年   12篇
  2016年   22篇
  2015年   26篇
  2014年   37篇
  2013年   68篇
  2012年   63篇
  2011年   70篇
  2010年   45篇
  2009年   47篇
  2008年   71篇
  2007年   63篇
  2006年   62篇
  2005年   44篇
  2004年   47篇
  2003年   46篇
  2002年   52篇
  2001年   33篇
  2000年   51篇
  1999年   46篇
  1998年   27篇
  1997年   24篇
  1996年   19篇
  1995年   11篇
  1994年   8篇
  1993年   10篇
  1992年   23篇
  1991年   18篇
  1990年   30篇
  1989年   23篇
  1988年   18篇
  1987年   24篇
  1986年   16篇
  1985年   6篇
  1984年   17篇
  1983年   8篇
  1982年   12篇
  1980年   5篇
  1978年   8篇
  1976年   4篇
  1975年   11篇
  1974年   5篇
  1973年   5篇
  1972年   5篇
  1971年   9篇
  1969年   8篇
  1967年   7篇
排序方式: 共有1336条查询结果,搜索用时 0 毫秒
61.
The effects of manganese (Mn) toxicity on photosynthesis in white birch ( Betula platyphylla var. japonica ) leaves were examined by the measurement of gas exchange and chlorophyll fluorescence in hydroponically cultured plants. The net photosynthetic rate at saturating light and ambient CO2 (Ca) of 35 Pa decreased with increasing leaf Mn concentrations. The carboxylation efficiency, derived from the difference in CO2 assimilation rate at intercellular CO2 pressures attained at Ca of 13 Pa and O Pa, decreased with greater leaf Mn accumulation. Net photosynthetic rate at saturating light and saturating CO2 (5%) also declined with leaf Mn accumulation while the maximum quantum yield of O2 evolution at saturating CO2 was not affected. The maximum efficiency of PSII photochemistry (Fv/Fm) was little affected by Mn accumulation in white birch leaves over a wide range of leaf Mn concentrations (2–17 mg g−1 dry weight). When measured in the steady state of photosynthesis under ambient air at 430 μmol quanta m−2 s−1, the levels of photochemical quenching (qP) and the excitation capture efficiency of open PSII (F'v/F'm) declined with Mn accumulation in leaves. The present results suggest that excess Mn in leaves affects the activities of the CO2 reduction cycle rather than the potential efficiency of photochemistry, leading to increases in QA reduction state and thermal energy dissipation, and a decrease in quantum yield of PSII in the steady state.  相似文献   
62.
Diatoms occupy a key position as a primary producer in the global aquatic ecosystem. We developed methods to isolate highly intact thylakoid membranes and the photosystem I (PS I) complex from a marine centric diatom, Chaetoceros gracilis. The PS I reaction center (RC) was purified as a super complex with light-harvesting fucoxanthin-chlorophyll (Chl)-binding proteins (FCP). The super complex contained 224 Chl a, 22 Chl c, and 55 fucoxanthin molecules per RC. The apparent molecular mass of the purified FCP-PS I super complex (approximately 1000 kDa) indicated that the super complex was composed of a monomer of the PS I RC complex and about 25 copies of FCP. The complex contained menaquinone-4 as the secondary electron acceptor A1 instead of phylloquinone. Time-resolved fluorescence emission spectra at 77 K indicated that fast (16 ps) energy transfer from a Chl a band at 685 nm on FCP to Chls on the PS I RC complex occurs. The ratio of fucoxanthin to Chl a on the PS I-bound FCP was lower than that of weakly bound FCP, suggesting that PS I-bound FCP specifically functions as the mediator of energy transfer between weakly bound FCPs and the PS I RC.  相似文献   
63.
Superoxide dismutase (SOD) is supposed to be an effective agent for neutrophil-mediated inflammation in the area of critical medicine. We investigated the involvement of SOD in the regulation of neutrophil apoptosis. Exogenously added SOD effectively induced neutrophil apoptosis, and the fluorescence patterns determined using annexin-V and the 7-AAD were similar to those seen in Fas-mediated neutrophil apoptosis. Neutrophils are short-lived leukocytes that need to be removed safely by apoptosis. The clearance of apoptotic neutrophils from sites of inflammation is a crucial determinant of the resolution of inflammation. Catalase inhibited the neutrophil apoptosis and caspase-3 activation. Spontaneous apoptosis, hydrogen peroxide and anti-Fas antibody-induced apoptosis of neutrophils were accelerated in Down's syndrome patients, in whom the SOD gene is overexpressed. Hydrogen peroxide was thought to be a possible major mediator of ROS-induced neutrophil apoptosis in caspase-dependent manner. Neutrophil apoptosis represents a crucial step in the mechanism governing the resolution of inflammation and has been suggested as a possible target for the control of neutrophil-mediated tissue injury. SOD may be a potential inhibitory mediator of neutrophil-mediated inflammation.  相似文献   
64.
65.
Transferases and hydrolases catalyze different chemical reactions and express different dynamic responses upon ligand binding. To insulate the ligand molecule from the surrounding water, transferases bury it inside the protein by closing the cleft, while hydrolases undergo a small conformational change and leave the ligand molecule exposed to the solvent. Despite these distinct ligand‐binding modes, some transferases and hydrolases are homologous. To clarify how such different catalytic modes are possible with the same scaffold, we examined the solvent accessibility of ligand molecules for 15 SCOP superfamilies, each containing both transferase and hydrolase catalytic domains. In contrast to hydrolases, we found that nine superfamilies of transferases use two major strategies, oligomerization and domain fusion, to insulate the ligand molecules. The subunits and domains that were recruited by the transferases often act as a cover for the ligand molecule. The other strategies adopted by transferases to insulate the ligand molecule are the relocation of catalytic sites, the rearrangement of secondary structure elements, and the insertion of peripheral regions. These findings provide insights into how proteins have evolved and acquired distinct functions with a limited number of scaffolds.  相似文献   
66.
Quantification of annual carbon sequestration is very important in order to assess the function of forest ecosystems in combatting global climate change and the ecosystem responses to those changes. Annual cycling and budget of carbon in a forested basin was investigated to quantify the carbon sequestration of a cool-temperate deciduous forest ecosystem in the Horonai stream basin, Tomakomai Experimental Forest, northern Japan. Net ecosystem exchange, soil respiration, biomass increment, litterfall, soil-solution chemistry, and stream export were observed in the basin from 1999–2001 as a part of IGBP-TEMA project. We found that 258 g C m–2 year–1 was sequestered annually as net ecosystem exchange (NEE) in the forested basin. Discharge of carbon to the stream was 4 g C m–2 year–1 (about 2% of NEE) and consisted mainly of dissolved inorganic carbon (DIC). About 43% of net ecosystem productivity (NEP) was retained in the vegetation, while about 57% of NEP was sequestered in soil, suggesting that the movement of sequestered carbon from aboveground to belowground vegetation was an important process for net carbon accumulation in soil. The derived organic carbon from aboveground vegetation that moved to the soil mainly accumulated in the solid phase of the soil, with the result that the export of dissolved organic carbon to the stream was smaller than that of dissolved inorganic carbon. Our results indicated that the aboveground and belowground interaction of carbon fluxes was an important process for determining the rate and retention time of the carbon sequestration in a cool-temperate deciduous forest ecosystem in the southwestern part of Hokkaido, northern Japan.  相似文献   
67.
Spatial genetic structure (SGS) of plants mainly depends on the effective population size and gene dispersal. Maternally inherited loci are expected to have higher genetic differentiation between populations and more intensive SGS within populations than biparentally inherited loci because of smaller effective population sizes and fewer opportunities of gene dispersal in the maternally inherited loci. We investigated biparentally inherited nuclear genotypes and maternally inherited chloroplast haplotypes of microsatellites in 17 tree populations of three wild cherry species under different conditions of tree distribution and seed dispersal. As expected, interpopulation genetic differentiation was 6–9 times higher in chloroplast haplotypes than in nuclear genotypes. This difference indicated that pollen flow 4–7 times exceeded seed flow between populations. However, no difference between nuclear and chloroplast loci was detected in within‐population SGS intensity due to their substantial variation among the populations. The SGS intensity tended to increase as trees became more aggregated, suggesting that tree aggregation biased pollen and seed dispersal distances toward shorter. The loss of effective seed dispersers, Asian black bears, did not affect the SGS intensity probably because of mitigation of the bear loss by other vertebrate dispersers and too few tree generations after the bear loss to alter SGS. The findings suggest that SGS is more variable in smaller spatial scales due to various ecological factors in local populations.  相似文献   
68.
In this study, we isolated a 25-kDa novel snake venom protein, designated ablomin, from the venom of the Japanese Mamushi snake (Agkistrodon blomhoffi). The amino-acid sequence of this protein was determined by peptide sequencing and cDNA cloning. The deduced sequence showed high similarity to helothermine from the Mexican beaded lizard (Heloderma horridum horridum), which blocks voltage-gated calcium and potassium channels, and ryanodine receptors. Ablomin blocked contraction of rat tail arterial smooth muscle elicited by high K+-induced depolarization in the 0.1-1 microm range, but did not block caffeine-stimulated contraction. Furthermore, we isolated three other proteins from snake venoms that are homologous to ablomin and cloned the corresponding cDNAs. Two of these homologous proteins, triflin and latisemin, also inhibited high K+-induced contraction of the artery. These results indicate that several snake venoms contain novel proteins with neurotoxin-like activity.  相似文献   
69.
Because little is known about how the innate immune response influences skin pigmentation, we examined whether Toll‐like receptor (TLR) agonists participate in melanogenesis and melanosome transportation. We observed that TLR2/2 agonist HKLM and TLR3 agonist Poly(I:C) increased the amount of extracellular melanin from primary human epidermal melanocytes. HKLM, but not Poly(I:C), increased the melanogenic genes such as tyrosinase and dopachrome tautomerase. Poly(I:C) increased the expression of Rab27A, a molecule that facilitates melanosome transport to perimembranous actin filament. UVB irradiation induced Rab27A and melanosome transportation in a similar manner of Poly(I:C). SiRNA for TLR3 or Rab27A suppressed the perimembranous accumulation of Gp100‐positive vesicles in melanocytes and decreased melanin transfer to neighboring keratinocytes induced by both Poly(I:C) and UVB. These results suggest that the microenvironment in the epidermis and innate immune stimuli, such as microbiome and ultraviolet represented here by TLR2 and TLR3 agonists, could affect the melanogenesis in human melanocytes.  相似文献   
70.
  • Stomatal ozone flux is closely related to ozone injury to plants. Jarvis‐type multiplicative model has been recommended for estimating stomatal ozone flux in forest trees. Ozone can change stomatal conductance by both stomatal closure and less efficient stomatal control (stomatal sluggishness). However, current Jarvis‐type models do not account for these ozone effects on stomatal conductance in forest trees.
  • We examined seasonal course of stomatal conductance in two common deciduous tree species native to northern Japan (white birch: Betula platyphylla var. japonica ; deciduous oak: Quercus mongolica var. crispula ) grown under free‐air ozone exposure. We innovatively considered stomatal sluggishness in the Jarvis‐type model using a simple parameter, s , relating to cumulative ozone uptake (defined as POD : phytotoxic ozone dose).
  • We found that ozone decreased stomatal conductance of white birch leaves after full expansion (?28%). However, such a reduction of stomatal conductance by ozone fell in late summer (?10%). At the same time, ozone reduced stomatal sensitivity of white birch to VPD and increased stomatal conductance under low light conditions. In contrast, in deciduous oak, ozone did not clearly change the model parameters.
  • The consideration of both ozone‐induced stomatal closure and stomatal sluggishness improved the model performance to estimate stomatal conductance and to explain the dose–response relationship on ozone‐induced decline of photosynthesis of white birch. Our results indicate that ozone effects on stomatal conductance (i.e . stomatal closure and stomatal sluggishness) are crucial for modelling studies to determine stomatal response in deciduous trees, especially in species sensitive to ozone.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号