首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   636篇
  免费   34篇
  670篇
  2023年   1篇
  2022年   2篇
  2021年   12篇
  2020年   7篇
  2019年   6篇
  2018年   9篇
  2017年   12篇
  2016年   18篇
  2015年   28篇
  2014年   31篇
  2013年   36篇
  2012年   44篇
  2011年   35篇
  2010年   24篇
  2009年   28篇
  2008年   39篇
  2007年   40篇
  2006年   42篇
  2005年   31篇
  2004年   37篇
  2003年   36篇
  2002年   31篇
  2001年   8篇
  2000年   7篇
  1999年   11篇
  1998年   4篇
  1997年   13篇
  1996年   5篇
  1995年   9篇
  1994年   5篇
  1993年   6篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   7篇
  1988年   3篇
  1987年   6篇
  1986年   10篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有670条查询结果,搜索用时 15 毫秒
1.
2.
Summary A case of ring chromosome 15 passed on to the index patient's two children is reported, and possible reasons for the infrequent records of inheritance of ring chromosome are suggested.  相似文献   
3.
The optimal of the specific growth rate was obtained with simple mathematical model in a yeast fed-batch cultures. The model was based on the mass balance around the fed-batch system and the relationship between the specific growth rate, mu, and the specific production rate of glutathione, rho(G). The optimal profile of mu was calculated as a bang-bang type, That is mu, should start from the maximum value, mu(max) and should be kept at mu(max); then mu should be switched to mu(c), which gives a maximum value of rho(G). It was proven from the maximum principle that switching was needed only once, with the switching time from mu(max) to mu(c) depending on the final required glutathione content. Finally, this ideal profile of mu for the maximum production of glutathione was realized by manipulating the substrates feed rate in the fed-batch culture. Using the extended Kalman filter and a programmed-controller/feedback-compensator (PF) system, mu could be controlled at the optimal profile obtained. As a result, the maximum production of glutathione was accomplished fairly successfully. However, further improvement in the controller performance for mu is desired. The control strategy employed here can be applied to other batch reaction processes.  相似文献   
4.
The sexual differentiation of Schizosaccharomyces pombe is controlled by many cellular components which have not been fully characterized. We isolated a gene called msa2 as a multi-copy suppressor of a sporulation abnormal mutant (sam1). Msa2p is identical with Nrd1p which has been characterized as a factor that blocks the onset of sexual differentiation. The yeast two-hybrid system was used to identify Cpc2p, a fission yeast homolog of the RACK1 protein, that interacted with Msa2p/Nrd1p. We confirmed that Msa2p/Nrd1p interacted with Cpc2p in S. pombe cells. An epistatic analysis of msa2/nrd1 and cpc2 suggests that Msa2p/Nrd1p was an upstream regulator for Cpc2p. A localization analysis of Cpc2p and Msa2p/Nrd1p indicates that both proteins were predominantly localized in the cytoplasm. The interaction of negative regulator Msa2p/Nrd1p with positive regulator Cpc2p suggests a new regulatory circuit in the sexual differentiation of S. pombe.  相似文献   
5.
The activity of branched-chain 2-oxo acid dehydrogenase complex increased 3.0-fold in liver of rats fed on 0.1%(w/w) clofibrate. Immunotitration experiments with antibodies against the constituent enzymes of the complex revealed that this increase resulted mainly from the increased amounts of only two(a decarboxylase and a lipoate acyltransferase) of three components of the complex and that the other component(dihydrolipoamide dehydrogenase) remained unchanged in its content, irrespective of clofibrate administration. The increases of both enzyme components were associated with increases in their mRNA levels which were estimated by in vitro translation with poly(A)+ RNA.  相似文献   
6.
The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1+, two temperature-sensitive mcb1 gene mutants (mcb1ts) were isolated. Extensive genetic analysis showed that the mcb1ts mutants were suppressed by a mcm5+ multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1ts mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1ts mutants. Furthermore, the mcb1ts mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex.  相似文献   
7.
8.
Most plant pathogenic Agrobacterium strains have been classified into three biovars, "biovar 1 (A. tumefaciens; Rhizobium radiobacter), biovar 2 (A. rhizogenes; R. rhizogenes) and biovar 3 (A. vitis; R. vitis)". The bacteria possess diverse types of genomic organization depending on the biovar. Previous genomic physical maps indicated difference in location of rDNA and chromosomally-coded virulence genes between biovar 1 and 2 genomes. In order to understand biovar 3 genome and its evolution in relation to the biovar 1, 2 and 3 genomes, we constructed physical map of a pathogenic biovar 3 strain K-Ag-1 in this study. Its genome consisted of two circular chromosomes (3.6 and 1.1 Mbp in length), and three plasmids (560, 230 and 70 kbp). Gene mapping based on the physical map showed presence of two rDNA loci in the larger chromosome and at least one rDNA locus in the smaller chromosome. Six chromosomal virulence genes, namely chvA, chvD, chvE, glgP, exoC and ros were found in the larger chromosome and not in the smaller chromosome. The location of rDNA loci is similar with that of biovar 1 genome, whereas the location of chromosomal virulence genes is similar with that of biovar 2 genome despite of the closer 16S-rRNA based phylogenetic relation of biovar 3 with biovar 1 than with biovar 2. Genomic PFGE RFLP analysis revealed that the K-Ag-1 strain, which was isolated on a kiwifruit plant in Japan, has the closest intra-species relation with two strains isolated from grapevine plants in Japan among eight biovar 3 strains examined. This datum suggests that the line of the strain is a major one in biovar 3 in Japan. Evolution of the genome of the strain is discussed based on the data.  相似文献   
9.
2-Methyl-6-(4-methoxyphenyl)imidazo[1,2-a]pyrazin-3(7H)-one (MCLA) is an oxygen-induced chemiluminescent compound. It has been shown that the chemiluminescence can be enhanced by forming a cyclomaltooligosaccharide (cyclodextrin)-bound MCLA, and therefore, in continuation of the survey of the types of cyclodextrins, in this study, MCLA was attached to the secondary hydroxyl face of delta-cyclodextrin, which consists of nine D-glucose units. Although the oxygen-induced chemiluminescence efficiency of delta-cyclodextrin-bound MCLA in a pH 8.0 aqueous phosphate buffer was 12 times greater than that of MCLA, the efficiency was markedly lower than that of gamma-cyclodextrin-bound MCLA, which exhibited the highest chemiluminescence efficiency in the previous investigation. Although fluorescence efficiency and light-emitter formation efficiency for delta-cyclodextrin-bound MCLA were similar to those for gamma-cyclodextrin-bound MCLA, singlet-excited state formation efficiency for delta-cyclodextrin-bound MCLA was lower than that for gamma-cyclodextrin-bound MCLA. This study distinctly indicated the optimum cyclodextrin for construction of greatly luminescent cyclodextrin-bound MCLA is gamma-cyclodextrin.  相似文献   
10.
We quantified the growth behavior of all available single gene deletion strains of budding yeast under ethanol stress. Genome-wide analyses enabled the extraction of the genes and determination of the functional categories required for growth under this condition. Statistical analyses revealed that the growth of 446 deletion strains under stress induced by 8% ethanol was defective. We classified these deleted genes into known functional categories, and found that many were important for growth under ethanol stress including several categories that have not been characterized, such as peroxisome. We also performed genome-wide screening under osmotic stress and identified 329 osmotic-sensitive strains. We excluded these strains from the 446 ethanol-sensitive strains to extract the genes whose deletion caused sensitivity to ethanol-specific (359 genes), osmotic-specific (242 genes), and both stresses (87 genes). We also extracted the functional categories that are specifically important for growth under ethanol stress. The genes and functional categories identified in the analysis might provide clues to improving ethanol stress tolerance among yeast cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号