首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1017篇
  免费   48篇
  2023年   1篇
  2022年   4篇
  2021年   15篇
  2020年   9篇
  2019年   8篇
  2018年   12篇
  2017年   19篇
  2016年   26篇
  2015年   32篇
  2014年   47篇
  2013年   53篇
  2012年   66篇
  2011年   60篇
  2010年   34篇
  2009年   36篇
  2008年   61篇
  2007年   55篇
  2006年   58篇
  2005年   60篇
  2004年   79篇
  2003年   60篇
  2002年   55篇
  2001年   34篇
  2000年   25篇
  1999年   26篇
  1998年   8篇
  1997年   10篇
  1996年   9篇
  1995年   10篇
  1994年   5篇
  1993年   3篇
  1992年   8篇
  1991年   11篇
  1990年   10篇
  1989年   11篇
  1988年   5篇
  1987年   5篇
  1986年   13篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1976年   2篇
  1974年   1篇
  1971年   2篇
  1970年   3篇
  1968年   1篇
  1965年   1篇
排序方式: 共有1065条查询结果,搜索用时 15 毫秒
51.
Development of definitive endoderm from embryonic stem cells in culture   总被引:30,自引:0,他引:30  
The cellular and molecular events regulating the induction and tissue-specific differentiation of endoderm are central to our understanding of the development and function of many organ systems. To define and characterize key components in this process, we have investigated the potential of embryonic stem (ES) cells to generate endoderm following their differentiation to embryoid bodies (EBs) in culture. We found that endoderm can be induced in EBs, either by limited exposure to serum or by culturing in the presence of activin A (activin) under serum-free conditions. By using an ES cell line with the green fluorescent protein (GFP) cDNA targeted to the brachyury locus, we demonstrate that endoderm develops from a brachyury(+) population that also displays mesoderm potential. Transplantation of cells generated from activin-induced brachyury(+) cells to the kidney capsule of recipient mice resulted in the development of endoderm-derived structures. These findings demonstrate that ES cells can generate endoderm in culture and, as such, establish this differentiation system as a unique murine model for studying the development and specification of this germ layer.  相似文献   
52.
Clinical therapies for both obesity and obese non-insulin-dependent diabetes mellitus require maintenance of reduced body weight after the initial successful reduction resulting from calorie control, exercise, or medication. Although beta(3)-adrenergic receptor (beta(3)-AR) agonists have been shown to stimulate whole body energy expenditure and lipid mobilization, whether stimulatory effects on oxygen consumption and lipolysis are influenced by chronic exposure to agonists has not been fully characterized. We therefore examined the acute and chronic effects of FR-149175, a selective beta(3)-AR agonist, on whole body oxygen consumption in genetically obese Zucker fatty rats. Chronic treatment with FR-149175 caused a decrease in both body weight gain and white fat pad weight at doses that induced lipolysis in acute treatment (1 and 3.2 mg/kg p.o.). Single administration of FR-149175 (0.1, 1, and 3.2 mg/kg p.o.) dose dependently increased whole body oxygen consumption. Repetitive administration did not cause attenuation of the thermogenic response at lower doses (0.1 and 1 mg/kg 2 times daily), whereas the highest dose (3.2 mg/kg 2 times daily) induced a progressive increase in oxygen consumption. PCR analyses of retroperitoneal white adipose tissue indicated little or no change in beta(3)-AR mRNA levels. Uncoupling protein 1 gene expression increased at 1 mg/kg, and drastic upregulation was detected at 3.2 mg/kg. FR-149175 also increased HSL mRNA levels in a dose-related manner, whereas there was no effect on genes involved in beta-oxidation. These results support that the thermogenic effect of beta(3)-AR agonists is not attenuated by chronic exposure to agonists.  相似文献   
53.
Magnesium-dependent neutral sphingomyelinase (N-SMase) present in plasma membranes is an enzyme that can be activated by stress in the form of inflammatory cytokines, serum deprivation, and hypoxia. The design of small molecule N-SMase inhibitors may offer new therapies for the treatment of inflammation, ischemic injury, and cerebral infarction. Recently, we synthesized a series of difluoromethylene analogues (SMAs) of sphingomyelin. We report here the effects of SMAs on the serum/glucose deprivation-induced death of neuronally differentiated pheochromocytoma (PC-12) cells and on cerebral infarction in mice. SMAs inhibited the enhanced N-SMase activity in the serum/glucose-deprived PC-12 cells, and thereby suppressed the apoptotic sequence: ceramide formation, c-Jun N-terminal kinase phosphorylation, caspase-3 activation, and DNA fragmentation in the nuclei. Administration of SMA-7 (10 mg/kg i.v.) with IC50= 3.3 microM to mice whose middle cerebral arteries were occluded reduced significantly the size of the cerebral infarcts, compared to the control mice. These results suggest that N-SMase is a key component of the signaling pathways in cytokine- and other stress-induced cellular responses, and that inhibiting or stopping N-SMase activity is an important strategy to prevent neuron death from ischemia.  相似文献   
54.
55.
The instream distributions and feeding habits of two species of sleeper, Eleotris acanthopoma and E. fusca, were studied in the Teima River on Okinawa Island, southern Japan. Both adult fishes inhabited the river, but their distribution patterns were found to be different. The distribution of E. acanthopoma was from the tidally influenced area to the lower part of the freshwater area, whereas E. fusca was distributed almost entirely in the freshwater area. They were found to coexist at the upper limit of the tidally influenced area and the lower part of the freshwater area. Their feeding habits were clearly different, although both species were carnivorous. Eleotris acanthopoma fed mainly on crabs in the tidally influenced area and on aquatic snails in the freshwater area, where they coexist with E. fusca. In contrast, E. fusca fed mainly on shrimps in the freshwater area. Their coexistence may result from the difference in their feeding habits.  相似文献   
56.
57.
MEC1 and TEL1 encode ATR- and ATM-related proteins in the budding yeast Saccharomyces cerevisiae, respectively. Phleomycin is an agent that catalyzes double-strand breaks in DNA. We show here that both Mec1 and Tel1 regulate the checkpoint response following phleomycin treatment. MEC1 is required for Rad53 phosphorylation and cell-cycle progression delay following phleomycin treatment in G1, S or G2/M phases. The tel1Δ mutation confers a defect in the checkpoint responses to phleomycin treatment in S phase. In addition, the tel1Δ mutation enhances the mec1 defect in activation of the phleomycin-induced checkpoint pathway in S phase. In contrast, the tel1Δ mutation confers only a minor defect in the checkpoint responses in G1 phase and no apparent defect in G2/M phase. Methyl methanesulfonate (MMS) treatment also activates checkpoints, inducing Rad53 phosphorylation in S phase. MMS-induced Rad53 phosphorylation is not detected in mec1Δ mutants during S phase, but occurs in tel1Δ mutants similar to wild-type cells. Finally, Xrs2 is phosphorylated after phleomycin treatment in a TEL1-dependent manner during S phase, whereas no significant Xrs2 phosphorylation is detected after MMS treatment. Together, our results support a model in which Tel1 contributes to checkpoint control in response to phleomycin-induced DNA damage in S phase.  相似文献   
58.
UFD2a is a mammalian homolog of Saccharomyces cerevisiae Ufd2, originally described as an E4 ubiquitination factor. UFD2a belongs to the U-box family of ubiquitin ligases (E3s) and likely functions as both an E3 and E4. We have isolated and characterized the mouse gene (Ube4b) for UFD2a. A full-length (approximately 5700 bp) Ube4b cDNA was isolated and the corresponding gene spans >100 kb, comprising 27 exons. Luciferase reporter gene analysis of the 5(') flanking region of Ube4b revealed that nucleotides -1018 to -943 (relative to the translation initiation site) possess promoter activity. This functional sequence contains two putative Sp1 binding sites but not a TATA box. Immunoblot and immunohistochemical analyses revealed that UFD2a is expressed predominantly in the neuronal tissues. We also show that UFD2a interacts with VCP (a AAA-family ATPase) that is thought to mediate protein folding. These data implicate UFD2a in the degradation of neuronal proteins by the ubiquitin-proteasome pathway.  相似文献   
59.
2-Methyl-6-(4-methoxyphenyl)imidazo[1,2-a]pyrazin-3(7H)-one (MCLA) is an oxygen-induced chemiluminescent compound. It has been shown that the chemiluminescence can be enhanced by forming a cyclomaltooligosaccharide (cyclodextrin)-bound MCLA, and therefore, in continuation of the survey of the types of cyclodextrins, in this study, MCLA was attached to the secondary hydroxyl face of delta-cyclodextrin, which consists of nine D-glucose units. Although the oxygen-induced chemiluminescence efficiency of delta-cyclodextrin-bound MCLA in a pH 8.0 aqueous phosphate buffer was 12 times greater than that of MCLA, the efficiency was markedly lower than that of gamma-cyclodextrin-bound MCLA, which exhibited the highest chemiluminescence efficiency in the previous investigation. Although fluorescence efficiency and light-emitter formation efficiency for delta-cyclodextrin-bound MCLA were similar to those for gamma-cyclodextrin-bound MCLA, singlet-excited state formation efficiency for delta-cyclodextrin-bound MCLA was lower than that for gamma-cyclodextrin-bound MCLA. This study distinctly indicated the optimum cyclodextrin for construction of greatly luminescent cyclodextrin-bound MCLA is gamma-cyclodextrin.  相似文献   
60.
Ubiquitylation as a quality control system for intracellular proteins   总被引:1,自引:0,他引:1  
Quality control of intracellular proteins is essential for cellular homeostasis. Molecular chaperones recognize and contribute to the refolding of misfolded or unfolded proteins, whereas the ubiquitin-proteasome system mediates the degradation of such abnormal proteins. Ubiquitin-protein ligases (E3s) determine the substrate specificity for ubiquitylation and have been classified into HECT and RING-finger families. More recently, however, U-box proteins, which contain a domain (the U box) of about 70 amino acids that is conserved from yeast to humans, have been identified as a new type of E3. The prototype U-box protein, yeast Ufd2, was identified as a ubiquitin chain assembly factor (E4) that cooperates with a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and an E3 to catalyze the formation of a ubiquitin chain on artificial substrates. Yeast Ufd2 is functionally implicated in cell survival under stressful conditions. This review addresses recent progress in characterization of the role of E3 enzymes, especially that of U-box proteins, in quality control of intracellular proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号