首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   31篇
  483篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   7篇
  2018年   6篇
  2017年   6篇
  2016年   11篇
  2015年   21篇
  2014年   18篇
  2013年   39篇
  2012年   31篇
  2011年   26篇
  2010年   19篇
  2009年   12篇
  2008年   24篇
  2007年   36篇
  2006年   28篇
  2005年   32篇
  2004年   22篇
  2003年   19篇
  2002年   23篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   7篇
  1997年   11篇
  1996年   7篇
  1995年   6篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
  1984年   6篇
  1982年   2篇
  1981年   1篇
  1977年   8篇
  1976年   1篇
  1975年   2篇
  1974年   5篇
  1968年   2篇
排序方式: 共有483条查询结果,搜索用时 9 毫秒
121.
Summary We have established a unique betalain pigmentation system in callus cultures that originated from seedlings of Portulaca sp. Jewel. Within three different Jewel lines examined, one line (JR) was clearly superior with regard to callus growth rate and pigment formation. Furthermore, after ten cycles of selection of deeply colored callus patches, the selected clones contained on an average four times the amount of betalain as compared to the non-selected mother line. The colorization was induced by light, but disappeared in the dark. Pigment synthesis was detectable within 30 h after irradiation and showed positive correlation with irradiation periods.Abbreviations 2,4-D 2,4-dichlorophenoxy-acetic acid - HPLC high performance liquid chromatography  相似文献   
122.
The establishment of a polarized morphology is essential for the development and function of neurons. During the development of the mammalian neocortex, neurons arise in the ventricular zone (VZ) from radial glia cells (RGCs) and leave the VZ to generate the cortical plate (CP). During their migration, newborn neurons first assume a multipolar morphology in the subventricular zone (SVZ) and lower intermediate zone (IZ). Subsequently, they undergo a multi-to-bipolar (MTB) transition to become bipolar in the upper IZ by developing a leading process and a trailing axon. The small GTPases Rap1A and Rap1B act as master regulators of neural cell polarity in the developing mouse neocortex. They are required for maintaining the polarity of RGCs and directing the MTB transition of multipolar neurons. Here we show that the Rap1 guanine nucleotide exchange factor (GEF) C3G (encoded by the Rapgef1 gene) is a crucial regulator of the MTB transition in vivo by conditionally inactivating the Rapgef1 gene in the developing mouse cortex at different time points during neuronal development. Inactivation of C3G results in defects in neuronal migration, axon formation and cortical lamination. Live cell imaging shows that C3G is required in cortical neurons for both the specification of an axon and the initiation of radial migration by forming a leading process.  相似文献   
123.
Zinc ion (Zn(2+)) can be coordinated with four or three amino acid residues to stabilize a protein's structure or to form a catalytic active center. We used phage display selection of a dodecamer random peptide library with Zn(2+) to identify structural zinc sites. The binding specificity for Zn(2+) of selected sequences was confirmed using enzyme-linked immunosorbent and competitive inhibition assays. Circular dichroism spectra indicated that the interaction with Zn(2+) induced a change in conformation, which means the peptide acts as a structural zinc site. Furthermore, a search of protein databases revealed that two selected sequences corresponded to parts of natural zinc sites of copper/zinc superoxide dismutase and zinc-containing ferredoxin. We demonstrated that Zn(2+)-binding sequences selected from the random combinatorial library would be candidates for artificial structural zinc sites.  相似文献   
124.
125.
1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) 1 and various 5- or 6,7-substituted analogues were synthesized and assayed for neurotoxicity towards SH-SY5Y cells. Among mono-substituted derivatives of 1, hydroxyl substitution decreased the toxicity, while methoxyl substitution increased it. Disubstituted derivatives of 1, 5a and 5b, showed the opposite tendency. Hydroxy-1MeTIQ derivatives were tested for neuroprotective activity, and 3b and 4b exhibited greater efficacy than 1. We suggest that hydroxy-1MeTIQ derivatives, especially 4b, may have potential for the treatment of Parkinson's disease.  相似文献   
126.
Recently, we have reported that a new synthetic compound, 1,2bis(nicotinamido)-propane (nicaraven), improved cardiac function following preservation and reperfusion. In this study, we investigated the efficacy of nicaraven as a radical scavenger by using an in vitro model of oxidative stress, to clarify mechanisms of the protective effect of this new compound on reperfusion injury in rat heart. Ring segments of epicardial right coronary arteries (RCA) of pig were suspended in organ chambers and exposed to hydroxyl radicals (·OH), generated (by two different systems ) by 0.28 mM FeSO4/0.28 mM H2O2 and DHF/Fe3+-ADP (2.4 mM, 43 nM, and 1.56 uM, respectively) to the bathing solution for 60 min. Prior exposure of the coronary arteries to ·OH significantly produced right-ward shift of the dose-response curves of the bradykinin-induced endothelium-dependent relaxations (an increase in the ED50 value for bradykinin by 4.37 and 1.98 times than control in two different ·OH generating systems, respectively), but did not affect the maximum relaxation responses. The presence of nicaraven (10-4 and 10-5 M) in the ·OH generating system, shifted the dose-response curves to bradykinin to the control level, suggesting a significant hydroxyl radical scavenging effect of the drug. These results indicate that nicaraven, a new hydroxyl radical scavenger, exhibits a protective effect on hydroxyl radicalinduced endothelial dysfunctions of pig coronary artery.  相似文献   
127.
The reactions of 2- and 3-aminopropionitrile (APN), and 2,2-iminodipropionitrile (IDPN) were carried out in aqueous ammoniacal media. 2-APN was found to give IDPN, N-(1-cyanoethyl)alanine amide, N-(1-cyanoethyl)alanine, N-(1-carbamoylethyl)alanine, 2,2-iminodipropionic acid, alanine amide, and alanine. Compounds of biological significance such as peptides and amino acids other than alanine were not formed. The results were well consistent with those obtained for aminoacetonitrile. IDPN which can be formed easily from 2-APN in aqueous media, also yielded the same products as with 2-APN. On the other hand, 3-APN gave 3-alanine via 3-alanine amide under similar conditions. 3-APN was found to be more stable than 2-APN in aqueous media.  相似文献   
128.
Pathological changes in axonal function are integral features of many neurological disorders, yet our knowledge of the molecular basis of axonal dysfunction remains limited. Microfluidic chambers (MFCs) can provide unique insight into the axonal compartment independent of the soma. Here we demonstrate how an MFC based cell culture system can be readily adapted for the study of axonal function in vitro. We illustrate the ease and versatility to assay electrogenesis and conduction of action potentials (APs) in naïve, damaged or sensitized DRG axons using calcium imaging at the soma for pharmacological screening or patch-clamp electrophysiology for detailed biophysical characterisation. To demonstrate the adaptability of the system, we report by way of example functional changes in nociceptor axons following sensitization by neurotrophins and axotomy in vitro. We show that NGF can locally sensitize axonal responses to capsaicin, independent of the soma. Axotomizing neurons in MFC results in a significant increase in the proportion of neurons that respond to axonal stimulation, and interestingly leads to accumulation of Nav1.8 channels in regenerating axons. Axotomy also augmented AP amplitude following axotomy and altered activation thresholds in a subpopulation of regenerating axons. We further show how the system can readily be used to study modulation of axonal function by non-neuronal cells such as keratinocytes. Hence we describe a novel in vitro platform for the study of axonal function and a surrogate model for nerve injury and sensitization.  相似文献   
129.
Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号