首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1597篇
  免费   74篇
  1671篇
  2023年   4篇
  2022年   8篇
  2021年   9篇
  2020年   9篇
  2019年   10篇
  2018年   30篇
  2017年   16篇
  2016年   34篇
  2015年   40篇
  2014年   50篇
  2013年   78篇
  2012年   77篇
  2011年   95篇
  2010年   58篇
  2009年   61篇
  2008年   96篇
  2007年   119篇
  2006年   95篇
  2005年   111篇
  2004年   105篇
  2003年   90篇
  2002年   105篇
  2001年   28篇
  2000年   14篇
  1999年   20篇
  1998年   20篇
  1997年   22篇
  1996年   25篇
  1995年   13篇
  1994年   24篇
  1993年   19篇
  1992年   21篇
  1991年   15篇
  1990年   18篇
  1989年   14篇
  1988年   11篇
  1987年   8篇
  1986年   10篇
  1985年   7篇
  1984年   8篇
  1983年   7篇
  1982年   9篇
  1981年   5篇
  1980年   9篇
  1979年   5篇
  1978年   10篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
排序方式: 共有1671条查询结果,搜索用时 15 毫秒
101.
The cell adhesion molecule L1 (L1-CAM) plays critical roles in neurite growth. Its cytoplasmic domain (L1CD) binds to ankyrins that associate with the spectrin-actin network. This paper demonstrates that L1-CAM interactions with ankyrinB (but not with ankyrinG) are involved in the initial formation of neurites. In the membranous protrusions surrounding the soma before neuritogenesis, filamentous actin (F-actin) and ankyrinB continuously move toward the soma (retrograde flow). Bead-tracking experiments show that ankyrinB mediates L1-CAM coupling with retrograde F-actin flow in these perisomatic structures. Ligation of the L1-CAM ectodomain by an immobile substrate induces L1CD-ankyrinB binding and the formation of stationary ankyrinB clusters. Neurite initiation preferentially occurs at the site of these clusters. In contrast, ankyrinB is involved neither in L1-CAM coupling with F-actin flow in growth cones nor in L1-based neurite elongation. Our results indicate that ankyrinB promotes neurite initiation by acting as a component of the clutch module that transmits traction force generated by F-actin flow to the extracellular substrate via L1-CAM.  相似文献   
102.
103.
104.
Minoda A  Sonoike K  Okada K  Sato N  Tsuzuki M 《FEBS letters》2003,553(1-2):109-112
Photosystem (PS) II activity of a sulfoquinovosyl diacylglycerol (SQDG)-deficient mutant (hf-2) of Chlamydomonas was partially decreased compared with that of wild-type. The susceptibility to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was also modified in the mutant. Photometric measurements in the isolated thylakoid membranes of hf-2 revealed that the lowered activity in the mutant was derived from a decrease in the efficiency of the electron donation from water to tyrosine Z, not from the efficiency of the electron transport from Q(A) to Q(B). This result was confirmed by the decay kinetics of chlorophyll fluorescence determined in vivo. We conclude that SQDG contributes to maintaining the conformation of PSII complexes, particularly that of D1 polypeptides, which are necessary for maximum activities in Chlamydomonas.  相似文献   
105.
The planarian central nervous system (CNS) can be used as a model for studying neural regeneration in higher organisms. Despite its simple structure, recent studies have shown that the planarian CNS can be divided into several molecular and functional domains defined by the expression of different neural genes. Remarkably, a whole animal, including the molecularly complex CNS, can regenerate from a small piece of the planarian body. In this study, a collection of neural markers has been used to characterize at the molecular level how the planarian CNS is rebuilt. Planarian CNS is composed of an anterior brain and a pair of ventral nerve cords that are distinct and overlapping structures in the head region. During regeneration, 12 neural markers have been classified as early, mid-regeneration and late expression genes depending on when they are upregulated in the regenerative blastema. Interestingly, the results from this study show that the comparison of the expression patterns of different neural genes supports the view that at day one of regeneration, the new brain appears within the blastema, whereas the pre-existing ventral nerve cords remain in the old tissues. Three stages in planarian CNS regeneration are suggested.  相似文献   
106.
Peptidylarginine deiminase (PAD) deiminates arginine residues in proteins to citrulline residues Ca(2+) dependently. There are four types of PADs, I, II, III, and V, in humans. We studied the subcellular distribution of PAD V in HL-60 granulocytes and peripheral blood granulocytes. Expression of green fluorescent protein-tagged PADs in HeLa cells revealed that PAD V is localized in the nucleus, whereas PAD I, II, and III are localized in the cytoplasm. PAD V deletion mutants indicated that the sequence residues 45-74 have a nuclear localization signal (NLS). A sequence feature of this NLS is a three-lysine residue cluster preceded by a proline residue and is not found in the three other PADs. Substitution of the lysine cluster by an alanine cluster abrogated the nuclear import activity. These results suggested that the NLS is a classical monopartite NLS. HL-60 granulocytes, neutrophils, and eosinophils stained with antibody specific for PAD V exhibited distinct positive signals in the nucleus. Subcellular fractionation of HL-60 granulocytes also showed the nuclear localization of the enzyme. When neutrophils were stimulated with calcium ionophore, protein deimination occurred in the nucleus. The major deiminated proteins were identified as histones H2A, H3, and H4. The implication of PAD V in histone modifications is discussed.  相似文献   
107.
Inositol 1,4,5-trisphosphate receptor (IP3R) is a highly controlled calcium (Ca2+) channel gated by inositol 1,4,5-trisphosphate (IP3). Multiple regulators modulate IP3-triggered pore opening by binding to discrete allosteric sites within IP3R. Accordingly we have postulated that these regulators structurally control ligand gating behavior; however, no structural evidence has been available. Here we show that Ca2+, the most pivotal regulator, induced marked structural changes in the tetrameric IP3R purified from mouse cerebella. Electron microscopy of the IP3R particles revealed two distinct structures with 4-fold symmetry: a windmill structure and a square structure. Ca2+ reversibly promoted a transition from the square to the windmill with relocations of four peripheral IP3-binding domains, assigned by binding to heparin-gold. Ca2+-dependent susceptibilities to limited digestion strongly support the notion that these alterations exist. Thus, Ca2+ appeared to regulate IP3 gating activity through the rearrangement of functional domains.  相似文献   
108.
Flt3 ligand (FL) dramatically increases the number of immunostimulatory dendritic cells (DC) and their precursors in bone marrow (BM) and secondary lymphoid tissues. Herein we tested the ability of FL-mobilized donor hemopoietic cells to promote induction of skin graft tolerance across full MHC barriers. C57BL/10 (B10; H2(b), IE(-)) mice were given 10(8) spleen cells (SC) from normal or FL-treated, H-2-mismatched B10.D2 (H2(d), IE(+)) donors i.v. on day 0, 200 mg/kg i.p. cyclophosphamide on day 2, and 10(7) T cell-depleted BM cells from B10.D2 mice on day 3. B10.D2 skin grafting was performed on day 14. Indefinite allograft survival (100 days) was induced in recipients of FL-SC, but not in mice given normal SC. Tolerance was associated with blood macrochimerism and was confirmed by second-set skin grafting with donor skin 100 days after the first graft. In tolerant mice, peripheral donor-reactive T cells expressing TCR Vbeta11 were deleted selectively. Immunocompetence of tolerant FL-SC-treated mice was proven by rapid rejection of third-party skin grafts. To our knowledge this is the first report that mobilization of DC in donor cell infusions can be used to induce skin graft tolerance across MHC barriers, accompanied by specific deletion of donor-reactive T cells.  相似文献   
109.
At least two polymorphic Alu insertions have been previously identified and characterized within the class I region of the major histocompatibility complex (MHC). We have identified another two new polymorphic Alu insertions, AluyHJ and AluyHF, located near HLA-J and HLA-F, respectively, within the a block of the MHC. Here we report on (1) the haplotypic relationships between the Alu dimorphisms and the HLA-A locus within a panel of 51 IHW homozygous cell lines representing at least 36 HLA class I haplotypes, (2) the Alu genotype, allele, and haplotype frequencies present in the Australian Caucasians and Japanese populations, and (3) the frequency of association between the different Alu dimorphisms and the HLA-A alleles in 109 Australian Caucasians and 99 Japanese. PCR was used to detect the presence or absence of insertion for AluyHJ, AluyHG, and AluyHF within the DNA samples prepared from the cell lines and the two population groups that had been previously typed for HLA-A. In the homozygous cell lines, all three Alu insertions were found in only one HLA class I haplotype (HLA-A1, -B57, -Cw6), no Alu insertions were detected in six HLA class I haplotypes and one or more of the Alu insertions were found in 29 HLA class I haplotypes. At least one of the Alu insertions was found in about 86% of the Japanese and Australian individuals, with the AluyHJ generally related inversely to AluyHG and/or AluyHF. The gene frequency of the AluyHJ and AluyHF insertions was significantly different (p <0.05) BETWEEN JAPANESE AND AUSTRALIANS, WHEREAS THERE WAS NO DIFFERENCE (P > 0.05) between the frequencies of AluyHG in the two populations. The Alu haplotype frequencies were also significantly different between the Japanese and the Australians. In the cell lines and the population groups, the AluyHJ insertion was most frequently found associated with HLA-A1 or A24, AluyHG with HLA-A2, and AluyHF with HLA-A2, -A10, or -A26. This study suggests that the three polymorphic Alu elements have been inserted into the a block of the MHC in different progenitor groups and therefore will be useful lineage and linkage markers in human population studies and for elucidating the evolution of HLA class I haplotypes.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号