首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1280篇
  免费   57篇
  1337篇
  2022年   8篇
  2021年   7篇
  2020年   9篇
  2019年   8篇
  2018年   22篇
  2017年   15篇
  2016年   31篇
  2015年   29篇
  2014年   38篇
  2013年   66篇
  2012年   64篇
  2011年   78篇
  2010年   48篇
  2009年   47篇
  2008年   88篇
  2007年   95篇
  2006年   83篇
  2005年   100篇
  2004年   90篇
  2003年   80篇
  2002年   91篇
  2001年   9篇
  2000年   3篇
  1999年   6篇
  1998年   17篇
  1997年   14篇
  1996年   22篇
  1995年   13篇
  1994年   18篇
  1993年   17篇
  1992年   16篇
  1991年   14篇
  1990年   11篇
  1989年   5篇
  1988年   8篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   8篇
  1979年   2篇
  1978年   8篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
排序方式: 共有1337条查询结果,搜索用时 15 毫秒
991.
Serum uric acid (SUA) levels are associated with metabolic syndrome (MetS) and its components such as glucose intolerance and type 2 diabetes. It is unknown whether there are gender-specific differences regarding the relationship between SUA levels, impaired fasting glucose (IFG) and newly detected diabetes. We recruited 1,209 men aged 60±15 (range, 19–89) years and 1,636 women aged 63±12 (range, 19–89) years during their annual health examination from a single community. We investigated the association between SUA levels and six categories according to fasting plasma glucose (FPG) level {normal fasting glucose (NFG), <100 mg/dL; high NFG-WHO, 100 to 109 mg/dL; IFG-WHO, 110 to 125 mg/dL; IFG-ADA, 100 to 125 mg/dL; newly detected diabetes, ≥126 mg/dL; known diabetes} SUA levels were more strongly associated with the different FPG categories in women compared with men. In women, the associations remained significant for IFG-WHO (OR, 1.23, 95% CI, 1.00–1.50) and newly detected diabetes (OR, 1.33, 95% CI, 1.03–1.72) following multivariate adjustment. However, in men all the associations were not significant. Thus, there was a significant interaction between gender and SUA level for newly detected diabetes (P = 0.005). SUA levels are associated with different categories of impaired fasting glucose in participants from community-dwelling persons, particularly in women.  相似文献   
992.
993.
Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3 R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3 cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2.  相似文献   
994.
Transient Receptor Potential Melastatin 3 (TRPM3) is a widely expressed calcium-permeable non-selective cation channel that is stimulated by high concentrations of nifedipine or by physiological steroids that include pregnenolone sulphate. Here we sought to identify steroids that inhibit TRPM3. Channel activity was studied using calcium-measurement and patch-clamp techniques. Progesterone (0.01-10μM) suppressed TRPM3 activity evoked by pregnenolone sulphate. Progesterone metabolites and 17β-oestradiol were also inhibitory but the effects were relatively small. Dihydrotestosterone was an inhibitor at concentrations higher than 1μM. Corticosteroids lacked effect. Overlay assays indicated that pregnenolone sulphate, progesterone and dihydrotestosterone bound to TRPM3. In contrast to dihydrotestosterone, progesterone inhibited nifedipine-evoked TRPM3 activity or activity in the absence of an exogenous activator, suggesting a pregnenolone sulphate-independent mechanism of action. Dihydrotestosterone, like a non-steroid look-alike compound, acted as a competitive antagonist at the pregnenolone sulphate binding site. Progesterone inhibited endogenous TRPM3 in vascular smooth muscle cells. Relevance of TRPM3 or the progesterone effect to ovarian cells, which have been suggested to express TRPM3, was not identified. The data further define a chemical framework for competition with pregnenolone sulphate at TRPM3 and expand knowledge of steroid interactions with TRPM3, suggesting direct steroid binding and pregnenolone sulphate-independent inhibition by progesterone.  相似文献   
995.
We successfully established two cell lines, an adenocarcinoma cell line (designated as HIGS) and Epstein-Barr virus-free normal B-lymphocyte cell line (designated as HIGS-BL), derived from a moderately to poorly differentiated adenocarcinoma of the stomach, and examined their characteristics. The tumor delivered to our laboratory from an operating room was cut into small pieces and cultured on the dishes. HIGS and HIGS-BL were established from each individual dish after the onset of primary culture. Although their culture methods were the same, the HIGS cell line was not established from the dishes growing HIGS-BL cells. In addition, HIGS-BL cells were scarcely observed in the HIGS cell dishes. Because of these factors, we have considered until now that HIGS-BL cells may inhibit the growth of HIGS cells or cause damage to HIGS cells by unknown mechanisms. Injection of HIGS-BL cells, other B-lymphocyte cell lines, or the conditioned media of HIGS-BL cells into nude mice bearing HIGS-grafted tumors was performed individually. When HIGS and HIGS-BL cells were co-cultured in the same dishes, HIGS-BL cells inhibited the proliferation of HIGS cells. The inhibition of grafted tumor growth was confirmed by the injection of not only the HIGS-BL cells but also the B-lymphocytes. Furthermore, this inhibition was only observed when the conditioned medium of B-lymphocytes was injected into the nude mice. These results suggested that the secretory products by general B-lymphocytes (including HIGS-BL) have some ability to inhibit the proliferation of HIGS cells. In addition, susceptibility tests to anti-cancer drugs suggested that HIGS cells were sensitive to CDDP, ADM and MMC, and HIGS-BL cells were sensitive to CDDP. If CDDP was used for chemotherapy in the patient, the drug produced atrophy of HIGS-BL cells. The study about HIGS and HIGS-BL cells reported the necessity for novel therapeutic approaches in oncotherapy.  相似文献   
996.
Plants interact with their environment by producing a diverse array of secondary metabolites. A majority of these compounds are phenylpropanoids and flavonoids which are valued for their medicinal and agricultural properties. The phenylpropanoid biosynthesis pathway proceeds with the basic C6-C3 carbon skeleton of phenylalanine, and involves a wide range of enzymes viz., phenylalanine ammonia lyase, coumarate hydroxylase, coumarate ligase, chalcone synthase, chalcone reductase and chalcone isomerase. Recently, bacteria have also been shown to contain homodimeric polyketide synthases belonging to the plant chalcone synthase superfamily linking the capabilities of plants and bacteria in the biosynthesis of flavonoids. We report here the presence of genes encoding the core enzymes of the phenylpropanoid pathway in an industrially useful fungus, Aspergillus oryzae. Although the assignment of enzyme function must be confirmed by further biochemical evidences, this work has allowed us to anticipate the phenylpropanoid metabolism profile in a filamentous fungus for the first time and paves way for research on identifying novel fungal flavonoid-like metabolites.  相似文献   
997.
To search for the downstream target protein kinases of Ca (2+)/calmodulin-dependent protein kinase kinase (CaMKK), we performed affinity chromatography purification of a rat brain extract using a GST-fused CaMKKalpha catalytic domain (residues 126-434) as the affinity ligand. Proteomic analysis was then carried out to identify the CaMKK-interacting protein kinases. In addition to identifying the catalytic subunit of 5'-AMP-activated protein kinase, we identified SAD-B as interacting. A phosphorylation assay and mass spectrometry analysis revealed that SAD-B was phosphorylated in vitro by CaMKK at Thr (189) in the activation loop. Phosphorylation of Thr (189) by CaMKKalpha induced SAD-B kinase activity by over 60-fold. In transfected COS-7 cells, kinase activity and Thr (189) phosphorylation of overexpressed SAD-B were significantly enhanced by coexpression of constitutively active CaMKKalpha (residues 1-434) in a manner similar to that observed with coexpression of LKB1, STRAD, and MO25. Taken together, these results indicate that CaMKKalpha is capable of activating SAD-B through phosphorylation of Thr (189) both in vitro and in vivo and demonstrate for the first time that CaMKK may be an alternative activating kinase for SAD-B.  相似文献   
998.
Calcium/calmodulin (CaM) dependent protein kinase I (CaM-KI) is a member of a well-defined multi-functional CaM-K family, but its physiological and developmental functions have yet to be determined. Here, we have cloned two cDNAs encoding CaM-KI from a Xenopus laevis (X. laevis) oocyte cDNA library. One is a novel isoform of CaM-KI, named CaM-KI LiKbeta (XCaM-KI LiKbeta). The other is an alpha isoform of CaM-KI (XCaM-KIalpha), which is a highly related to previously cloned mammalian isoform. XCaM-KIalpha was constantly expressed through embryogenesis, whereas XCaM-KI LiKbeta expression dramatically increased in the neurula stage. Both XCaM-KI isoforms exhibited kinase activity in a Ca(2+)/CaM-dependent manner. Overexpression of a constitutively active mutant of CaM-KI isoforms inhibited cell cleavage in X. laevis embryos and caused a marked change of cell morphology in Hela cells. Taken together, these results suggest that CaM-KI plays a role in cell-structure regulation during early embryonic development.  相似文献   
999.
Arabidopsis thaliana (Arabidopsis) treated with the four stereoisomers of Brz220 (2RS, 4RS-1-[4-propyl-2-(4-trifluoromethylphenyl)-1, 3-dioxane-2-ylmethyl]-1H-1, 2, 4-triazole) showed a dwarf phenotype like brassinosteroid (BR) biosynthesis mutants that were rescued by treatment of BRs. The target sites of each Brz220 stereoisomer were investigated by treatment of Arabidopsis with BRs in the dark. The results suggest that the stereoisomers block the 22-hydroxylation step in BR biosynthesis. This step is catalyzed by DWF4, an Arabidopsis cytochrome P450 identified as a steroid 22-hydroxylase. The enzyme was expressed in E. coli, and the binding affinity of the stereoisomers to recombinant DWF4 was analyzed. The results indicate that in these stereoisomers there exists a positive correlation between binding affinity to DWF4 and inhibition of Arabidopsis hypocotyl growth. In this context, we concluded that DWF4 is the target site of Brz220 in Arabidopsis.  相似文献   
1000.
Yuyama K  Yamamoto N  Yanagisawa K 《FEBS letters》2006,580(30):6972-6976
Endocytic pathway abnormalities were previously observed in brains affected with Alzheimer’s disease (AD). To clarify the pathological relevance of these abnormalities to assembly of amyloid β-protein (Aβ), we treated PC12 cells with chloroquine, which potently perturbs membrane trafficking from endosomes to lysosomes. Chloroquine treatment induced accumulation of GM1 ganglioside (GM1) in Rab5-positive enlarged early endosomes and on the cell surface. Notably, an increase in GM1 level on the cell surface was sufficient to induce Aβ assembly. Our results suggest that endocytic pathway abnormalities in AD brain induce GM1 accumulation on the cell surface, leading to amyloid fibril formation in brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号