全文获取类型
收费全文 | 2232篇 |
免费 | 168篇 |
专业分类
2400篇 |
出版年
2022年 | 13篇 |
2021年 | 18篇 |
2020年 | 13篇 |
2019年 | 17篇 |
2018年 | 38篇 |
2017年 | 23篇 |
2016年 | 32篇 |
2015年 | 61篇 |
2014年 | 56篇 |
2013年 | 154篇 |
2012年 | 101篇 |
2011年 | 84篇 |
2010年 | 75篇 |
2009年 | 52篇 |
2008年 | 101篇 |
2007年 | 127篇 |
2006年 | 110篇 |
2005年 | 98篇 |
2004年 | 101篇 |
2003年 | 93篇 |
2002年 | 102篇 |
2001年 | 91篇 |
2000年 | 70篇 |
1999年 | 66篇 |
1998年 | 28篇 |
1997年 | 32篇 |
1996年 | 18篇 |
1995年 | 20篇 |
1994年 | 19篇 |
1993年 | 15篇 |
1992年 | 42篇 |
1991年 | 52篇 |
1990年 | 56篇 |
1989年 | 65篇 |
1988年 | 43篇 |
1987年 | 45篇 |
1986年 | 30篇 |
1985年 | 24篇 |
1984年 | 11篇 |
1983年 | 11篇 |
1982年 | 12篇 |
1981年 | 18篇 |
1979年 | 17篇 |
1978年 | 10篇 |
1977年 | 12篇 |
1975年 | 13篇 |
1974年 | 24篇 |
1973年 | 9篇 |
1972年 | 11篇 |
1967年 | 9篇 |
排序方式: 共有2400条查询结果,搜索用时 15 毫秒
91.
Akiko Miki Katsuaki Miki Shinji Ueno Delphine M. Bonnet Wersinger Cynthia Berlinicke Gillian C. Shaw Shinichi Usui Yuxia Wang Donald J. Zack Peter A. Campochiaro 《Journal of cellular physiology》2010,224(1):262-272
It has recently been reported that relatively short‐term inhibition of vascular endothelial growth factor (VEGF) signaling can cause photoreceptor cell death, a potentially clinically important finding since VEGF blockade has become an important modality of treatment of ocular neovascularization and macular edema. However, in a set of studies in which we achieved extended and complete blockage of VEGF‐induced vascular leakage through retinal expression of a VEGF binding protein, we did not observe any toxicity to retinal neurons. To follow‐up on these apparently discrepant findings, we designed a set of experiments with the kinase inhibitor SU4312, which blocks phosphorylation of VEGF receptors, to look directly for evidence of VEGF inhibition‐related retinal toxicity. Using transgenic mice with sustained expression of VEGF in photoreceptors, we determined that periocular injection of 3 µg of SU4312 every 5 days markedly suppressed subretinal neovascularization, indicating effective blockade of VEGF signaling. Wild‐type mice given periocular injections of 5 µg of SU4312 every 5 days for up to 12 weeks showed normal scotopic and photopic electroretinograms (ERGs), no TUNEL stained cells in the retina, and no reduction in outer nuclear layer thickness. Incubation of cultured ganglion cells or retinal cultures containing photoreceptors with high doses of SU4312 did not reduce cell viability. These data suggest that blocking VEGF signaling in the retina for up to 12 weeks does not damage photoreceptors nor alter ERG function and should reassure patients who are receiving frequent injections of VEGF antagonists for choroidal and retinal vascular diseases. J. Cell. Physiol. 224:262–272, 2010 © 2010 Wiley‐Liss, Inc. 相似文献
92.
Koizumi H Yamaguchi N Hattori M Ishikawa TO Aoki J Taketo MM Inoue K Arai H 《The Journal of biological chemistry》2003,278(14):12489-12494
Intracellular type I platelet activating factor-acetylhydrolase is a phospholipase that consists of a dimer of two homologous catalytic subunits alpha1 and alpha2 as well as LIS1, a product of the causative gene for type I lissencephaly. LIS1 plays an important role in neuronal migration during brain development, but the in vivo function of the catalytic subunits remains unclear. In this study, we generated alpha1- and a2-deficient mice by targeted disruption. alpha1(-/-) mice are indistinguishable from wild-type mice, whereas alpha2(-/-) male mice show a significant reduction in testis size. Double-mutant male mice are sterile because of severe impairment of spermatogenesis. Histological examination revealed marked degeneration at the spermatocyte stage and an increase of apoptotic cells in the seminiferous tubules. The catalytic subunits are expressed at high levels in testis as well as brain in mice. In wild-type mice, alpha2 is expressed in all seminiferous tubule cell types, whereas alpha1 is expressed only in the spermatogonia. This expression pattern parallels the finding that deletion of both subunits induces a marked loss of germ cells at an early spermatogenic stage. We also found that the LIS1 protein levels, but not the mRNA levels, were significantly reduced in alpha2(-/-) and double-mutant mice, suggesting that the catalytic subunits, especially alpha2, are a determinant of LIS1 expression level. 相似文献
93.
Kohno T Ichikawa H Totoki Y Yasuda K Hiramoto M Nammo T Sakamoto H Tsuta K Furuta K Shimada Y Iwakawa R Ogiwara H Oike T Enari M Schetter AJ Okayama H Haugen A Skaug V Chiku S Yamanaka I Arai Y Watanabe S Sekine I Ogawa S Harris CC Tsuda H Yoshida T Yokota J Shibata T 《Nature medicine》2012,18(3):375-377
94.
Yuichiro Arai Se KyungKim Hiroyasu Kinemuchi Takeshi Tadano Shinetsu Satoh Nobunori Satoh Katsuyuki Oyama Kensuke Kisara 《Neurochemistry international》1990,17(4):587-592
The present study was carried out mainly to clarify whether the two amphetamine metabolites, p-hydroxyamphetamine (P-OHA) and p-hydroxynorephedrine (p-OHN) are taken up by mouse brain 5-hydroxytryptamine (5-HT) nerve terminals to inhibit type A monoamine oxidase (MAO-A) and then potentiate the abnormal behavior, head-twitch. Of the two metabolites, only intracerebroventricular p-OHA, at 80 μg/mouse, sufficient to cause a head-twitch response (HTR), appreciably inhibited MAO-A activity without affecting MAO-B activity in homogenates of the mouse striatum, hypothalamus and the rest of the forebrain; and p-OHN did not inhibit either type of MAO at the dose tested. Estimation of intra- and extrasynaptosomal MAO-A activity showed that both metabolites significantly inhibited only the intrasynaptosomal deamination of 5-HT by MAO-A with p-OHA being more potent. Taken together with our previous findings, these present results clearly indicate that p-OHA may accumulate in the 5-HT nerve terminals through the uptake system, and concomitantly inhibit MAO-A activity. These actions of p-OHA may increase intraneuronal 5-HT levels and then potentiate 5-HT release to cause interaction with the post-synaptic 5-HT receptors. 相似文献
95.
Yohey Suzuki Uta Konno Akari Fukuda Daisuke D. Komatsu Akinari Hirota Katsuaki Watanabe Yoko Togo Noritoshi Morikawa Hiroki Hagiwara Daisuke Aosai Teruki Iwatsuki Urumu Tsunogai Seiya Nagao Kazumasa Ito Takashi Mizuno 《PloS one》2014,9(12)
In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20–60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes. 相似文献
96.
Fujita M Ieguchi K Davari P Yamaji S Taniguchi Y Sekiguchi K Takada YK Takada Y 《The Journal of biological chemistry》2012,287(15):12491-12500
Integrin αvβ3 plays a role in insulin-like growth factor-1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk). The specifics of the cross-talk are, however, unclear. In a current model, "ligand occupancy" of αvβ3 (i.e. the binding of extracellular matrix proteins) enhances signaling induced by IGF1 binding to IGF1R. We recently reported that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation. Consistently, the integrin binding-defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, but it still binds to IGF1R. Like αvβ3, integrin α6β4 is overexpressed in many cancers and is implicated in cancer progression. Here, we discovered that α6β4 directly bound to IGF1, but not to R36E/R37E. Grafting the β4 sequence WPNSDP (residues 167-172), which corresponds to the specificity loop of β3, to integrin β1 markedly enhanced IGF1 binding to β1, suggesting that the WPNSDP sequence is involved in IGF1 recognition. WT IGF1 induced α6β4-IGF1-IGF1R ternary complex formation, whereas R36E/R37E did not. When cells were attached to matrix, exogenous IGF1 or α6β4 expression had little or no effect on intracellular signaling. When cell-matrix adhesion was reduced (in poly(2-hydroxyethyl methacrylate-coated plates), IGF1 induced intracellular signaling and enhanced cell survival in an α6β4-dependent manner. Also IGF1 enhanced colony formation in soft agar in an α6β4-dependent manner. These results suggest that IGF binding to α6β4 plays a major role in IGF signaling in anchorage-independent conditions, which mimic the in vivo environment, and is a novel therapeutic target. 相似文献
97.
Yoshikazu Hashida Katsuaki Takechi Tomomi Abiru Noriyuki Yabe Hiroaki Nagase Koro Hattori Susumu Takio Yoshikatsu Sato Mitsuyasu Hasebe Hirokazu Tsukaya Hiroyoshi Takano 《The Plant journal : for cell and molecular biology》2020,101(6):1318-1330
In Arabidopsis thaliana the ANGUSTIFOLIA (AN) gene regulates the width of leaves by controlling the diffuse growth of leaf cells in the medio‐lateral direction. In the genome of the moss Physcomitrella patens, we found two normal ANs (PpAN1‐1 and 1‐2). Both PpAN1 genes complemented the A. thaliana an‐1 mutant phenotypes. An analysis of spatiotemporal promoter activity of each PpAN1 gene, using transgenic lines that contained each PpAN1‐promoter– uidA (GUS) gene, showed that both promoters are mainly active in the stems of haploid gametophores and in the middle to basal region of the young sporophyte that develops into the seta and foot. Analyses of the knockout lines for PpAN1‐1 and PpAN1‐2 genes suggested that these genes have partially redundant functions and regulate gametophore height by controlling diffuse cell growth in gametophore stems. In addition, the seta and foot were shorter and thicker in diploid sporophytes, suggesting that cell elongation was reduced in the longitudinal direction, whereas no defects were detected in tip‐growing protonemata. These results indicate that both PpAN1 genes in P. patens function in diffuse growth of the haploid and diploid generations but not in tip growth. To visualize microtubule distribution in gametophore cells of P. patens, transformed lines expressing P. patens α‐tubulin fused to sGFP were generated. Contrary to expectations, the orientation of microtubules in the tips of gametophores in the PpAN1‐1/1‐2 double‐knockout lines was unchanged. The relationships among diffuse cell growth, cortical microtubules and AN proteins are discussed. 相似文献
98.
99.
Ikuyo Ichi Nozomu Kono Yuka Arita Shizuka Haga Kotoko Arisawa Misato Yamano Mana Nagase Yoko Fujiwara Hiroyuki Arai 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(1):204-213
In mammals, 5,8,11-eicosatrienoic acid (Mead acid, 20:3n − 9) is synthesized from oleic acid during a state of essential fatty acid deficiency (EFAD). Mead acid is thought to be produced by the same enzymes that synthesize arachidonic acid and eicosapentaenoic acid, but the genes and the pathways involved in the conversion of oleic acid to Mead acid have not been fully elucidated. The levels of polyunsaturated fatty acids in cultured cells are generally very low compared to those in mammalian tissues. In this study, we found that cultured cells, such as NIH3T3 and Hepa1–6 cells, have significant levels of Mead acid, indicating that cells in culture are in an EFAD state under normal culture conditions. We then examined the effect of siRNA-mediated knockdown of fatty acid desaturases and elongases on the level of Mead acid, and found that knockdown of Elovl5, Fads1, or Fads2 decreased the level of Mead acid. This and the measured levels of possible intermediate products for the synthesis of Mead acid such as 18:2n − 9, 20:1n − 9 and 20:2n − 9 in the knocked down cells indicate two pathways for the synthesis of Mead acid: pathway 1) 18:1n − 9 → (Fads2) → 18:2n − 9 → (Elovl5) → 20:2n − 9 → (Fads1) → 20:3n − 9 and pathway 2) 18:1n − 9 → (Elovl5) → 20:1n − 9 → (Fads2) → 20:2n − 9 → (Fads1) → 20:3n − 9. 相似文献
100.
A protein kinase C cDNA without the regulatory domain is active after transfection in vivo in the absence of phorbol ester. 总被引:8,自引:5,他引:8 下载免费PDF全文
We constructed mutant protein kinase C (PKC) cDNAs which expressed PKC activity in vivo in the absence of phorbol ester activation. A hybrid PKC gene, PKAC, was constructed by substituting the coding region for the N-terminal 253 amino acids of PKC alpha with the N-terminal 17 amino acids of the cyclic AMP-dependent protein kinase catalytic subunit (PKA). A truncated PKC gene, delta PKC beta, lacking the coding region for amino acid positions 6 to 159 of PKC beta was also constructed. These mutant kinase genes expressed under the control of the SR alpha promoter activated the c-fos gene enhancer in Jurkat cells and initiated maturation of Xenopus laevis oocytes. Phorbol ester binding activity was absent in both constructs but was preserved in another hybrid gene, PKCA, which was composed of the coding region for 1 to 253 amino acids of PKC alpha at the N-terminal side and the coding region for 18 to 350 amino acids of PKA at the C-terminal side. These results indicate that elimination of the regulatory domain of PKC produces constitutively active PKC that can bypass activation by the phorbol ester. delta PKC beta, in synergy with a calcium ionophore, was capable of activating the interleukin 2 promoter, indicating that cooperation of PKC-dependent and calcium-dependent pathways is necessary for activation of the interleukin 2 gene. 相似文献