首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2232篇
  免费   168篇
  2400篇
  2022年   13篇
  2021年   18篇
  2020年   13篇
  2019年   17篇
  2018年   38篇
  2017年   23篇
  2016年   32篇
  2015年   61篇
  2014年   56篇
  2013年   154篇
  2012年   101篇
  2011年   84篇
  2010年   75篇
  2009年   52篇
  2008年   101篇
  2007年   127篇
  2006年   110篇
  2005年   98篇
  2004年   101篇
  2003年   93篇
  2002年   102篇
  2001年   91篇
  2000年   70篇
  1999年   66篇
  1998年   28篇
  1997年   32篇
  1996年   18篇
  1995年   20篇
  1994年   19篇
  1993年   15篇
  1992年   42篇
  1991年   52篇
  1990年   56篇
  1989年   65篇
  1988年   43篇
  1987年   45篇
  1986年   30篇
  1985年   24篇
  1984年   11篇
  1983年   11篇
  1982年   12篇
  1981年   18篇
  1979年   17篇
  1978年   10篇
  1977年   12篇
  1975年   13篇
  1974年   24篇
  1973年   9篇
  1972年   11篇
  1967年   9篇
排序方式: 共有2400条查询结果,搜索用时 15 毫秒
81.
Clinical symptoms and pathology observed in the cattle infected with Babesia bovis are quite similar to those of human cerebral malaria. Mechanisms involved in the pathogenesis of cerebral babesiosis, however, are still poorly understood because of the lack of a suitable experimental animal model. In this report, Masayoshi Tsuji and his colleagues describe B. bovis infection in severe combined immunodeficiency (SCID) mice, whose circulating red blood cells (RBCs) have been substituted with bovine RBCs (Bo-RBC-SCID mice). The infected mice not only develop a substantial level of parasitemia, but also show nerve symptoms and pathology similar to those observed in infected cattle.  相似文献   
82.
Microtubules play multiple roles in a wide range of cellular phenomena, including cell polarity establishment and chromosome segregation. A number of microtubule regulators have been identified, including microtubule-associated proteins and kinases, and knowledge of these factors has contributed to our molecular understanding of microtubule regulation of each relevant cellular process. The known regulators, however, are insufficient to explain how those processes are linked to one another, underscoring the need to identify additional regulators. To find such novel mechanisms and microtubule regulators, we performed a screen that combined genetics and microscopy for fission yeast mutants defective in microtubule organization. We isolated approximately 900 mutants showing defects in either microtubule organization or the nuclear envelope, and these mutants were classified into 12 categories. We particularly focused on one mutant, kis1, which displayed spindle defects in early mitosis. The kis1 mutant frequently failed to assemble a normal bipolar spindle. The responsible gene encoded a kinetochore protein, Mis19 (also known as Eic1), which localized to the interface of kinetochores and spindle poles. We also found that the inner kinetochore proteins Mis6/CENP-I and Cnp1/CENP-A were delocalized from kinetochores in the kis1 cells and that kinetochore-microtubule attachment was defective. Another mutant, mis6, also displayed similar spindle defects. We conclude that Kis1 is required for inner kinetochore organization, through which Kis1 ensures kinetochore-microtubule attachment and spindle integrity. Thus, we propose an unexpected relationship between inner kinetochore organization and spindle integrity.  相似文献   
83.
84.
Stromal cell-derived factor 1 (SDF-1) cooperates with cytokines to promote hematopoiesis. Here we demonstrate that SDF-1 activates Erk synergistically with interleukin-3 (IL-3) in hematopoietic cells. Small GTPases Ras and Rac were prominently activated by IL-3 and SDF-1, respectively. In accordance with this, Raf-1 was significantly activated by IL-3 but not by SDF-1. SDF-1 strongly induced phosphorylation of Raf-1 on S338, the target site for the Rac effector Paks, and enhanced the IL-3-induced activation of Raf-1 and MEK. Furthermore, the synergistic activation of Erk was inhibited by expression of a dominant-negative mutant of Pak1 or that of Rac and was enhanced by an activated mutant of Pak1. SDF-1 and IL-3 also showed synergistic effects on expansion of hematopoietic cells and on induction of chemotaxis, which were both inhibited by the MEK inhibitor PD98059. These results suggest that SDF-1 synergistically enhances IL-3-induced Erk activation by up-regulating Raf-1 activity through the Rac effector Pak kinases to promote hematopoiesis.  相似文献   
85.
The vacuolar-type H+-ATPase (V-ATPase) is a multi-subunit proton pump that is involved in both intra- and extracellular acidification processes throughout human body. Subunits constituting the peripheral stalk of the V-ATPase are known to have several isoforms responsible for tissue/cell specific different physiological roles. To study the different interaction of these isoforms, we expressed and purified the isoforms of human V-ATPase peripheral stalk subunits using Escherichia coli cell-free protein synthesis system: E1, E2, G1, G2, G3, C1, C2, H and N-terminal soluble part of a1 and a2 isoforms. The purification conditions were different depending on the isoforms, maybe reflecting the isoform specific biochemical characteristics. The purified proteins are expected to facilitate further experiments to study about the cell specific interaction and regulation and thus provide insight into physiological meaning of the existence of several isoforms of each subunit in V-ATPase.  相似文献   
86.
Glycerol‐3‐phosphate acyltransferase (GPAT) is involved in the first step in glycerolipid synthesis and is localized in both the endoplasmic reticulum (ER) and mitochondria. To clarify the functional differences between ER‐GPAT and mitochondrial (Mt)‐GPAT, we generated both GPAT mutants in C. elegans and demonstrated that Mt‐GPAT is essential for mitochondrial fusion. Mutation of Mt‐GPAT caused excessive mitochondrial fragmentation. The defect was rescued by injection of lysophosphatidic acid (LPA), a direct product of GPAT, and by inhibition of LPA acyltransferase, both of which lead to accumulation of LPA in the cells. Mitochondrial fragmentation in Mt‐GPAT mutants was also rescued by inhibition of mitochondrial fission protein DRP‐1 and by overexpression of mitochondrial fusion protein FZO‐1/mitofusin, suggesting that the fusion/fission balance is affected by Mt‐GPAT depletion. Mitochondrial fragmentation was also observed in Mt‐GPAT‐depleted HeLa cells. A mitochondrial fusion assay using HeLa cells revealed that Mt‐GPAT depletion impaired mitochondrial fusion process. We postulate from these results that LPA produced by Mt‐GPAT functions not only as a precursor for glycerolipid synthesis but also as an essential factor of mitochondrial fusion.  相似文献   
87.
In this study, the enhancement of photosynthetic PHA production was achieved using the highly active mutants of PHA synthase created by the in vitro evolutionally techniques. The wild-type and mutated PHA synthase genes from Aeromonas caviae were introduced into Arabidopsis thaliana together with the NADPH-dependent acetoacetyl-CoA reductase gene from Ralstonia eutropha. Expression of the highly active mutated PHA synthase genes, N149S and D171G, led to an 8-10-fold increase in PHA content in the T1 transgenic Arabidopsis, compared to plants harboring the wild-type PHA synthase gene. In homozygous T2 progenies, PHA content was further increased up to 6.1 mg/g cell dry weight. GC/MS analysis of the purified PHA from the transformants revealed that these PHAs were poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymers consisting of 0.2-0.8 mol % 3HV. The monomer composition of the P(3HB-co-3HV) copolymers synthesized by the wild-type and mutated PHA synthases reflected the substrate specificities observed in Escherichia coli. These results indicate that in vitro evolved PHA synthases can enhance the productivity of PHA and regulate the monomer composition in transgenic plants.  相似文献   
88.
89.
We raised monoclonal antibodies against senile plaque (SP) amyloid and obtained a clone 9D2, which labeled amyloid fibrils in SPs and reacted with approximately 50/100 kDa polypeptides in Alzheimer's disease (AD) brains. We purified the 9D2 antigens and cloned a cDNA encoding its precursor, which was a novel type II transmembrane protein specifically expressed in neurons. This precursor harbored three collagen-like Gly-X-Y repeat motifs and was partially homologous to collagen type XIII. Thus, we named the 9D2 antigen as CLAC (collagen-like Alzheimer amyloid plaque component), and its precursor as CLAC-P/collagen type XXV. The extracellular domain of CLAC-P/collagen type XXV was secreted by furin convertase, and the N-terminus of CLAC deposited in AD brains was pyroglutamate modified. Both secreted and membrane-tethered forms of CLAC-P/collagen type XXV specifically bound to fibrillized Abeta, implicating these proteins in beta-amyloidogenesis and neuronal degeneration in AD.  相似文献   
90.
The effects of a traditional Japanese herbal medicine, Kami-Untan-To (KUT), on brain choline (Ch) and Acetylcholine (ACh) levels in aged mice were examined. Further, the expression of choline acetyltransferase (ChAT) in the medial septum (MS), the vertical limbs of the diagonal band of Broca (VDB), and the nucleus basalis Meynert (NBM) was examined by immunohistochemistry. Following an oral administration of KUT to the aged mice for 3 months, ACh levels in the cortex, striatum and hippocampus were increased significantly. The density of ChAT-immunoreactive cells located in MS, VDB, and NBM in the KUT-treated group was increased significantly as compared to the non-treatment group. The survival rate of aged mice was significantly higher in the KUT-treated group as compared to that in the nontreated group. Our results suggest that KUT potentiates the brain acetylcholinergic system, and may become a possible anti-dementia drug.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号