首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   23篇
  259篇
  2023年   2篇
  2022年   6篇
  2021年   8篇
  2020年   9篇
  2019年   8篇
  2018年   12篇
  2017年   11篇
  2016年   7篇
  2015年   15篇
  2014年   26篇
  2013年   19篇
  2012年   24篇
  2011年   19篇
  2010年   16篇
  2009年   10篇
  2008年   17篇
  2007年   8篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   1篇
  1998年   1篇
  1997年   3篇
  1994年   1篇
  1993年   4篇
  1989年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
201.
Some endocytosis receptors related to the low-density lipoprotein receptor, including low-density lipoprotein receptor-related protein-1A, very-low-density lipoprotein receptor, and sorting protein-related receptor, bind protease-inhibitor complexes, including urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1), and the uPA-PAI-1 complex. The unique capacity of these receptors for high-affinity binding of many structurally unrelated ligands renders mapping of receptor-binding surfaces of serpin and serine protease ligands a special challenge. We have mapped the receptor-binding area of the uPA-PAI-1 complex by site-directed mutagenesis. Substitution of a cluster of basic residues near the 37-loop and 60-loop of uPA reduced the receptor-binding affinity of the uPA-PAI-1 complex approximately twofold. Deletion of the N-terminal growth factor domain of uPA reduced the affinity 2-4-fold, depending on the receptor, and deletion of both the growth factor domain and the kringle reduced the affinity sevenfold. The binding affinity of the uPA-PAI-1 complex to the receptors was greatly reduced by substitution of basic and hydrophobic residues in alpha-helix D and alpha-helix E of PAI-1. The localization of the implicated residues in the 3D structures of uPA and PAI-1 shows that they form a continuous receptor-binding area spanning the serpin as well as the A-chain and the serine protease domain of uPA. Our results suggest that the 10-100-fold higher affinity of the uPA-PAI-1 complex compared with the free components depends on the bonus effect of bringing the binding areas on uPA and PAI-1 together on the same binding entity.  相似文献   
202.
14-3-3 proteins constitute a family of well conserved proteins interacting with a large number of phosphorylated binding partners in eukaryotic cells. The plant plasma membrane H+-ATPase is an unusual target in that a unique phosphothreonine motif (946YpTV, where pT represents phosphothreonine) in the extreme C-terminal end of the H+-ATPase interacts with the binding cleft of 14-3-3 protein (Wurtele, M., Jelich-Ottmann, C., Wittinghofer, A., and Oecking, C. (2003) EMBO J. 22, 987-994). We report binding of 14-3-3 protein to a nonphosphorylated peptide representing the 34 C-terminal residues of the Arabidopsis plasma membrane H+-ATPase isoform 2 (AHA2). Following site-directed mutagenesis within the 45 C-terminal residues of AHA2, we conclude that, in addition to the 946YpTV motif, a number of residues located further upstream are required for phosphorylation-independent binding of 14-3-3. Among these, Thr-924 is important for interaction with 14-3-3 protein even when Thr-947 is phosphorylated. We suggest that the role of phosphorylation, which is accentuated by fusicoccin, is to stabilize protein-protein interaction between 14-3-3 protein and several residues of the H+-ATPase C-terminal domain.  相似文献   
203.
The family Psammodrilidae (Annelida) is a group of small polychaetes hitherto containing three nominal species in Psammodriloides and Psammodrilus. Psammodrilus swedmarki, n. sp. and P. moebjergi, n. sp. are described from subtidal coarse sand in Bermuda. Both new species are interstitial, as is the monotypic Psammodriloides fauveli Swedmark, 1958, which they resemble by their small size and lack of a muscular collar region. However, studies with scanning electron microscopy show that the larger, hermaphroditic P. moebjergi possesses a pair of peristomial dorsolateral non-ciliated areas with hexagonal cells representing those of the characteristic collar region of Psammodrilus. The uncini of both species resemble those of Psammodrilus balanoglossoides Swedmark, 1952. The systematically contradicting characters support a synonymization of the two genera. An emended diagnosis of Psammodrilus and a key to the species are presented.  相似文献   
204.
Pisione is a scaleless group of small scale worms inhabiting sandy bottoms in shallow marine waters. This group was once considered rare, but now 45 described species can be characterized, among others, by their paired, segmental copulatory organs (one to multiple external pairs), which display a complexity of various accessory structures. The evolutionary significance of these unique organs was suggested in the late 1960s, but has been heavily debated since the late 1990s and remains controversial. In the present paper, we study the internal relationships within Pisione, employing combined phylogenetic analyses of both molecular and morphological data from 16 terminals of Pisione, as well as two terminals of Pisionidens, and eight additional scale worms as outgroups. Our taxon sampling covers all geographical areas where the genus has been reported, as well as most of their morphological and copulatory variability, including representatives of the “africana,” “remota,” “crassa,” and “papuensis” groups, established previously by Yamanishi. We hereby provide a first insight into the relationships of the genus, testing previously proposed hypotheses on the evolutionary significance of male copulatory structures within Pisione, while attempting to understand patterns of distribution. The phylogenetic analyses using maximum likelihood and Bayesian methods consistently recovered two large clades spanning the East Atlantic (including the Mediterranean) and the Indo‐Pacific–West Atlantic, respectively. Character optimization on our trees revealed a high degree of homoplasy in both non‐reproductive and sexual characters of Pisione, with buccal acicula found to be the sole apomorphy among the morphological features assessed herein, with none defining the biogeographical subclades within. Overall, our comparative analyses highlight the high degree of morphological variation in this widely distributed genus, rejecting previous assertions of an increasing number and complexity of copulatory structures across the genus.  相似文献   
205.
Within Spiralia, Gnathifera may represent the deepest branching lineage comprising the jaw worms Gnathostomulida and their sister group Micrognathozoa + Syndermata. Yet, very few nervous system studies have been conducted on this lineage of microscopic, jaw-bearing worms, limiting our understanding of the evolution of this organ system in Spiralia. The nervous system of representatives from all major groups of Gnathostomulida was here mapped using confocal laser scanning microscopy and immunohistochemistry. Their intra-epidermal, unsegmented nervous systems comprise an anterior brain and three to five ventral and two to four dorsal longitudinal nerves, connected by few transverse commissures. Neurites of the stomatogastric nervous system were found lining the pharynx and connecting to a prominent buccal ganglion. Supposedly, sensory ciliated cells in the pharynx and the gut were documented for the first time. Based on these morphological results, primary homologies of neural structures in Gnathostomulida and other Gnathifera were hypothesized and thereafter tested using parsimony. This first neurophylogeny of Gnathostomulida resulted in a topology congruent with molecular data, supporting the monophyly of Bursovaginoidea, Conophoralia, and Scleroperalia. From this topology, the evolution of the gnathostomulid nervous system was reconstructed. It suggests a specialization and diversification of cords and serotonin-like immunoreactive cell patterns from a plesiomorphic neuroarchitecture of three unsegmented nerve cords and a compact anterior brain and buccal ganglion. These plesiomorphic states resemble the nervous system of Micrognathozoa, and possibly the ancestral states of Spiralia.  相似文献   
206.

Background

Noma is a gangrenous disease that leads to severe disfigurement of the face with high morbidity and mortality, but its etiology remains unknown. Young children in developing countries are almost exclusively affected. The purpose of the study was to record and compare bacterial diversity in oral samples from children with or without acute noma or acute necrotizing gingivitis from a defined geographical region in Niger by culture-independent molecular methods.

Methods and Principal Findings

Gingival samples from 23 healthy children, nine children with acute necrotizing gingivitis, and 23 children with acute noma (both healthy and diseased oral sites) were amplified using “universal” PCR primers for the 16 S rRNA gene and pooled according to category (noma, healthy, or acute necrotizing gingivitis), gender, and site status (diseased or control site). Seven libraries were generated. A total of 1237 partial 16 S rRNA sequences representing 339 bacterial species or phylotypes at a 98–99% identity level were obtained. Analysis of bacterial composition and frequency showed that diseased (noma or acute necrotizing gingivitis) and healthy site bacterial communities are composed of similar bacteria, but differ in the prevalence of a limited group of phylotypes. Large increases in counts of Prevotella intermedia and members of the Peptostreptococcus genus are associated with disease. In contrast, no clear-cut differences were found between noma and non-noma libraries.

Conclusions

Similarities between acute necrotizing gingivitis and noma samples support the hypothesis that the disease could evolve from acute necrotizing gingivitis in certain children for reasons still to be elucidated. This study revealed oral microbiological patterns associated with noma and acute necrotizing gingivitis, but no evidence was found for a specific infection-triggering agent.  相似文献   
207.
For the first time, the development of a cyclostome bryozoan has been studied with immunochemistry and confocal laser scanning microscopy, with emphasis on nerves and muscles. The larva is covered by multiciliated cells, which are latitudinally strongly elongated and show phalloidin-stained cell junctions. We hypothesize that these cells contract at metamorphosis and squeeze the apical invagination and the adhesive sac out. Ectodermal, longitudinal muscle cells extend from the cells of the inner, conical cuticularized part of the apical invagination to the lower part of the corona, around the adhesive sac pore. These muscles are retained in the ancestrula. Scattered monociliated nerve cells are interspersed between the coronal ciliary cells. An equatorial nerve in the larva disappears at metamorphosis. The central, conical part of the cuticle becomes the terminal membrane of the ancestrula, and the underlying ectodermal and mesodermal cell layers differentiate into the polypide bud, forming a deep narrow invagination, differentiating into vestibule–atrium, mouth ring and pharynx–stomach–rectum. Tentacles develop from the ring of cells around the mouth, and a small ganglion with four nerves innervating each of the tentacles develops at the anal side of the mouth. These new findings yield further support for previous homology statements of bryozoan larvae and development.  相似文献   
208.
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号