首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   23篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   9篇
  2019年   8篇
  2018年   12篇
  2017年   11篇
  2016年   7篇
  2015年   15篇
  2014年   26篇
  2013年   19篇
  2012年   24篇
  2011年   19篇
  2010年   16篇
  2009年   10篇
  2008年   17篇
  2007年   8篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   1篇
  1998年   1篇
  1997年   3篇
  1994年   1篇
  1993年   4篇
  1989年   1篇
排序方式: 共有257条查询结果,搜索用时 298 毫秒
141.
As a result of climate change, temperature patterns are expected to become increasingly irregular with longer and more frequent episodes of unseasonable warm spells during the winter season. Warm spells may promote premature loss of freezing tolerance and bud burst in woody perennials, thereby increasing the risk of tissue damage by subsequent frosts. This study investigated the variation in kinetics of deacclimation and bud break and associated changes in carbohydrate metabolism and water status in floral buds of six blackcurrant (Ribes nigrum) cultivars in response to a simulated warm spell (16/11 °C day/night). In three of the cultivars, the rate of deacclimation showed an almost logarithmic course, whereas the other three cultivars exhibited greater deacclimation resistance and a sigmoid deacclimation pattern. The timing and rate of bud development, and their relationship with deacclimation varied greatly amongst cultivars, indicating genotypic variation in time-dependent responses of freezing tolerance and bud break to warm temperatures. In all six cultivars, deacclimation and growth resumption were strongly associated with rehydration. In contrast, changes in carbohydrate metabolism were mostly associated with deacclimation. Evaluation of phenological responses of the same cultivars under field conditions showed that cultivars which were fast flushing in response to an experimental warm spell also exhibited early bud break under natural conditions, indicating that cultivar differences in phenological responses are consistent under different temperature conditions.  相似文献   
142.
Vast areas of the African savanna landscapes are characterized by tree‐covered Macrotermes termite mounds embedded within a relatively open savanna matrix. In concert with termites, large herbivores are important determinants of savanna woody vegetation cover. The relative cover of woody species has considerable effects on savanna function. Despite the potentially important ecological relationships between termite mounds, woody plants, large herbivores, and birds, these associations have previously received surprisingly little attention. We experimentally studied the effects of termites and large herbivores on the avian community in Lake Mburo National Park, Uganda, where woody vegetation is essentially limited to termite mounds. Our experiment comprised of four treatments in nine replicates; unfenced termite mounds, fenced mounds (excluding large mammals), unfenced adjacent savanna, and fenced savanna. We recorded species identity, abundance, and behavior of all birds observed on these plots over a two‐month period, from late dry until wet season. Birds used termite mounds almost exclusively, with only 3.5% of observations occurring in the treeless intermound savanna matrix. Mean abundance and species richness of birds doubled on fenced (large herbivores excluded) compared to unfenced mounds. Feeding behavior increased when large mammals were excluded from mounds, both in absolute number of observed individuals, and relative to other behaviors. This study documents the fundamental positive impact of Macrotermes termites on bird abundance and diversity in an African savanna. Birds play crucial functional roles in savanna ecosystems, for example, by dispersing fruits or regulating herbivorous insect populations. Thus, the role of birds in savanna dynamics depends on the distribution and abundance of termite mounds.  相似文献   
143.
144.
Understanding the determinants of spatial and temporal differences in the relative strength of consumer–resource interactions is an important endeavour in ecology. Here, we explore the necessary conditions for temporal shifts in the relative strength of rodent–plant interactions in an area characterised by profound spatial differences in trophic control, with predator–prey interactions prevailing in productive habitats and rodent–plant interactions dominating unproductive habitats of the forest–tundra ecotone. We report data obtained during the exceptionally massive rodent outbreak of 2010–2012 in northernmost Fennoscandia, including an experimental manipulation of herbivore access to vegetation plots across a large-scale productivity gradient, multiple observational measures of plant–rodent interactions linked to rodent abundance data and a large-scale survey of breeding avian predators and mammalian predator activity. Unexpectedly, rodent grazing impacts documented during the rodent outbreak were uniformly strong across the landscape, regardless of habitat productivity. The runaway response in rodent populations was facilitated by a high population growth rate in the early phase of the outbreak due to the extended absence of predators in productive habitats, concomitant with an exceptionally long-lasting lemming outbreak in unproductive habitats. Our results showed that spatio-temporal variation in trophic control also occurs in ecosystems structured according to the exploitation ecosystems hypothesis and emphasises the importance of long-term studies to capture nonlinear and stochastic features that shape ecosystem functioning. In this context, the temporary release from top–down regulation in productive habitats caused strong grazing impacts that may be crucial for the resilience of tundra ecosystems under the threat of climate change-driven shrub encroachment.  相似文献   
145.
146.
The neuropeptides pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are implicated in the photic entrainment of circadian rhythms in the suprachiasmatic nuclei (SCN). We now report that mice carrying a null mutation of the VPAC(2) receptor for VIP and PACAP (Vipr2(-/-)) are incapable of sustaining normal circadian rhythms of rest/activity behavior. These mice also fail to exhibit circadian expression of the core clock genes mPer1, mPer2, and mCry1 and the clock-controlled gene arginine vasopressin (AVP) in the SCN. Moreover, the mutants fail to show acute induction of mPer1 and mPer2 by nocturnal illumination. This study highlights the role of intercellular neuropeptidergic signaling in maintenance of circadian function within the SCN.  相似文献   
147.
Plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. It circulates in plasma in a complex with vitronectin (VN). We have studied biochemical mechanisms for PAI-1 neutralisation and its modulation by VN, using site-directed mutagenesis and limited proteolysis. We demonstrate that VN, besides delaying conversion of PAI-1 to the inactive latent form, also protects PAI-1 against cold- and detergent-induced substrate behaviour and counteracts conversion of PAI-1 to inert forms by certain amphipathic organochemical compounds. VN protection against cold- and detergent-induced substrate behaviour is associated with inhibition of the proteolytic susceptibility of beta-strand 5A. Alanine substitution of a lysine residue placed centrally in beta-strand 5A implied a VN-induced acceleration of latency transition, instead of the normal delay. This substitution not only protects PAI-1 against neutralisation, but also counteracts VN-induced protection against neutralisation. We conclude that beta-strand 5A plays a crucial role in VN-regulation of PAI-1 activity.  相似文献   
148.
Studies of community reactions to biotechnology and genetic engineering (GE), in particular, have identified a number of correlates of acceptance, including the field of application of a technology and various characteristics of the perceiver. Factor analysis of acceptability ratings (N=686) of 12 applications of new technologies revealed three factors, denoting medical, societal, and indulgent applications. Acceptability ratings of each application and of GE in principle were regressed onto 18 demographic, attitudinal, trust, and value variables previously identified as potential correlates of acceptance. Predictive profiles for acceptance of medical and societal applications were largely similar. General receptiveness toward science and technology was the primary predictor of GE acceptance and a major predictor of acceptance for each application area. Environmental concern and self-transcendent (e.g., pro-nature) values did not predict acceptance in any instance. Findings clarify considerations associated with acceptance of biotechnological innovations and support arguments against knowledge- and trust-deficit explanations of resistance to technology.  相似文献   
149.
Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub‐dominated systems to warming by studying the change of shrub biomass after a cessation of long‐term experimental warming in a forest–tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low‐biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub‐dominated ecosystems to climate warming.  相似文献   
150.
Communities are assembled from species that evolve or colonise a given geographic region, and persist in the face of abiotic conditions and interactions with other species. The evolutionary and colonisation histories of communities are characterised by phylogenetic diversity, while functional diversity is indicative of abiotic and biotic conditions. The relationship between functional and phylogenetic diversity infers whether species functional traits are divergent (differing between related species) or convergent (similar among distantly related species). Biotic interactions and abiotic conditions are known to influence macroecological patterns in species richness, but how functional and phylogenetic diversity of guilds vary with biotic factors, and the relative importance of biotic drivers in relation to geographic and abiotic drivers is unknown. In this study, we test whether geographic, abiotic or biotic factors drive biome‐scale spatial patterns of functional and phylogenetic diversity and functional convergence in vertebrate herbivores across the Arctic tundra biome. We found that functional and phylogenetic diversity both peaked in the western North American Arctic, and that spatial patterns in both were best predicted by trophic interactions, namely vegetation productivity and predator diversity, as well as climatic severity. Our results show that both bottom–up and top–down trophic interactions, as well as winter temperatures, drive the functional and phylogenetic structure of Arctic vertebrate herbivore assemblages. This has implications for changing Arctic ecosystems; under future warming and northward movement of predators potential increases in phylogenetic and functional diversity in vertebrate herbivores may occur. Our study thus demonstrates that trophic interactions can determine large‐scale functional and phylogenetic diversity just as strongly as abiotic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号