首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   23篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   9篇
  2019年   8篇
  2018年   12篇
  2017年   11篇
  2016年   7篇
  2015年   15篇
  2014年   26篇
  2013年   19篇
  2012年   24篇
  2011年   19篇
  2010年   16篇
  2009年   10篇
  2008年   17篇
  2007年   8篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   1篇
  1998年   1篇
  1997年   3篇
  1994年   1篇
  1993年   4篇
  1989年   1篇
排序方式: 共有257条查询结果,搜索用时 31 毫秒
121.
122.

Objective:

There are clear sex differences in the distribution of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in adults, with males having more VAT and less SAT than females. This study assessed whether these differences between the sexes were already present in preschool children. It also evaluated which measures of body composition were most appropriate for assessing abdominal obesity in this age group.

Design and Methods:

One‐hundred and five children (57 boys and 48 girls) participated in the study. Body composition was measured using dual‐energy X‐ray absorptiometry (DXA). Weight, height, and waist circumference (WC) were also recorded. Magnetic resonance imaging (MRI) of the entire abdomen using sixteen 10‐mm‐thick T1‐weighted slices was performed in a subgroup of 48 children (30 boys and 18 girls); SAT and VAT volumes were measured using semiautomated segmentation.

Results:

Boys had significantly more VAT than girls (0.17 versus 0.10 l, P < 0.001). Results showed that VAT correlated significantly with all measurements of anthropometry (P < 0.01) after adjusting for SAT and for total fat mass measured with DXA. The mean limits of agreement between DXA and MRI regarding truncal FM were calculated to be ?11.4 (range ?17.8 to ?3.6), using a Bland–Altman plot.

Conclusion:

Sex differences in adipose tissue distribution are apparent at an early age. MRI is the best method with which to study abdominal fat distribution in young children.
  相似文献   
123.
124.
Oxidative-nitrosative stress and inflammatory responses are associated with endoplasmic reticulum (ER) stress in diabetic retinopathy, raising the possibility that disturbances in ER protein processing may contribute to CNS dysfunction in diabetics. Upregulation of the unfolded protein response (UPR) is a homeostatic response to accumulation of abnormal proteins in the ER, and the present study tested the hypothesis that the UPR is upregulated in two models for diabetes, cultured astrocytes grown in 25 mmol/L glucose for up to 4 weeks and brain of streptozotocin (STZ)-treated rats with diabetes for 1–7 months. Markers associated with translational blockade (phospho-eIF2α and apoptosis (CHOP), inflammatory response (inducible nitric oxide synthase, iNOS), and nitrosative stress (nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase, GAPDH) were not detected in either model. Nrf2 was present in nuclei of low- and high-glucose cultures, consistent with oxidative stress. Astrocytic ATF4 expression was not altered by culture glucose concentration, whereas phospho-IRE and ATF6 levels were higher in low- compared with high-glucose cultures. The glucose-regulated chaperones, GRP78 and GRP94, were also expressed at higher levels in low- than high-glucose cultures, probably due to recurrent glucose depletion between feeding cycles. In STZ-rat cerebral cortex, ATF4 level was transiently reduced at 4 months, and p-IRE levels were transiently elevated at 3 months. However, GRP78 and GRP94 expression was not upregulated, and iNOS, amyloid-β, and nuclear accumulation of GAPDH were not evident in STZ-diabetic brain. High-glucose cultured astrocytes and STZ-diabetic brain are relatively resistant to diabetes-induced ER stress, in sharp contrast with cultured retinal Müller cells and diabetic rodent retina.  相似文献   
125.

Background and Aims

Stomata formed at high relative air humidity (RH) respond less to abscisic acid (ABA), an effect that varies widely between cultivars. This study tested the hypotheses that this genotypic variation in stomatal responsiveness originates from differential impairment in intermediates of the ABA signalling pathway during closure and differences in leaf ABA concentration during growth.

Methods

Stomatal anatomical features and stomatal responsiveness to desiccation, feeding with ABA, three transduction elements of its signalling pathway (H2O2, NO, Ca2+) and elicitors of these elements were determined in four rose cultivars grown at moderate (60 %) and high (90 %) RH. Leaf ABA concentration was assessed throughout the photoperiod and following mild desiccation (10 % leaf weight loss).

Key Results

Stomatal responsiveness to desiccation and ABA feeding was little affected by high RH in two cultivars, whereas it was considerably attenuated in two other cultivars (thus termed sensitive). Leaf ABA concentration was lower in plants grown at high RH, an effect that was more pronounced in the sensitive cultivars. Mild desiccation triggered an increase in leaf ABA concentration and equalized differences between leaves grown at moderate and high RH. High RH impaired stomatal responses to all transduction elements, but cultivar differences were not observed.

Conclusions

High RH resulted in decreased leaf ABA concentration during growth as a result of lack of water deficit, since desiccation induced ABA accumulation. Sensitive cultivars underwent a larger decrease in leaf ABA concentration rather than having a higher ABA concentration threshold for inducing stomatal functioning. However, cultivar differences in stomatal closure following ABA feeding were not apparent in response to H2O2 and downstream elements, indicating that signalling events prior to H2O2 generation are involved in the observed genotypic variation.  相似文献   
126.
127.
Pancreas secretes fluid rich in digestive enzymes and bicarbonate. The alkaline secretion is important in buffering of acid chyme entering duodenum and for activation of enzymes. This secretion is formed in pancreatic ducts, and studies to date show that plasma membranes of duct epithelium express H(+)/HCO(3)(-) transporters, which depend on gradients created by the Na(+)/K(+)-ATPase. However, the model cannot fully account for high-bicarbonate concentrations, and other active transporters, i.e. pumps, have not been explored. Here we show that pancreatic ducts express functional gastric and non-gastric H(+)-K(+)-ATPases. We measured intracellular pH and secretion in small ducts isolated from rat pancreas and showed their sensitivity to H(+)-K(+) pump inhibitors and ion substitutions. Gastric and non-gastric H(+)-K(+) pumps were demonstrated on RNA and protein levels, and pumps were localized to the plasma membranes of pancreatic ducts. Quantitative analysis of H(+)/HCO(3)(-) and fluid transport shows that the H(+)-K(+) pumps can contribute to pancreatic secretion in several species. Our results call for revision of the bicarbonate transport physiology in pancreas, and most likely other epithelia. Furthermore, because pancreatic ducts play a central role in several pancreatic diseases, it is of high relevance to understand the role of H(+)-K(+) pumps in pathophysiology.  相似文献   
128.
129.
130.
Zinc-finger nuclease (ZFN) gene targeting is emerging as a versatile tool for engineering of multiallelic gene deficiencies. A longstanding obstacle for detailed analysis of glycoproteomes has been the extensive heterogeneities in glycan structures and attachment sites. Here we applied ZFN targeting to truncate the O-glycan elongation pathway in human cells, generating stable 'SimpleCell' lines with homogenous O-glycosylation. Three SimpleCell lines expressing only truncated GalNAcα or NeuAcα2-6GalNAcα O-glycans were produced, allowing straightforward isolation and sequencing of GalNAc O-glycopeptides from total cell lysates using lectin chromatography and nanoflow liquid chromatography-mass spectrometry (nLC-MS/MS) with electron transfer dissociation fragmentation. We identified >100 O-glycoproteins with >350 O-glycan sites (the great majority previously unidentified), including a GalNAc O-glycan linkage to a tyrosine residue. The SimpleCell method should facilitate analyses of important functions of protein glycosylation. The strategy is also applicable to other O-glycoproteomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号