首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1658篇
  免费   170篇
  2023年   6篇
  2022年   16篇
  2021年   27篇
  2020年   23篇
  2019年   25篇
  2018年   19篇
  2017年   30篇
  2016年   45篇
  2015年   69篇
  2014年   85篇
  2013年   77篇
  2012年   116篇
  2011年   129篇
  2010年   69篇
  2009年   69篇
  2008年   95篇
  2007年   99篇
  2006年   93篇
  2005年   84篇
  2004年   67篇
  2003年   70篇
  2002年   78篇
  2001年   30篇
  2000年   30篇
  1999年   37篇
  1998年   23篇
  1997年   19篇
  1996年   10篇
  1995年   11篇
  1994年   8篇
  1993年   9篇
  1992年   14篇
  1991年   10篇
  1990年   16篇
  1989年   10篇
  1988年   10篇
  1987年   9篇
  1986年   8篇
  1985年   17篇
  1984年   8篇
  1983年   8篇
  1980年   9篇
  1979年   5篇
  1978年   5篇
  1977年   6篇
  1975年   6篇
  1974年   10篇
  1972年   8篇
  1967年   6篇
  1957年   5篇
排序方式: 共有1828条查询结果,搜索用时 15 毫秒
61.
62.
A promising route for understanding the origin and diversification of organismal form is through studies at the intersection of evolution and development (evo-devo). While much has been learned over the last two decades concerning macroevolutionary patterns of developmental change, a fundamental gap in the evo-devo synthesis is the integration of mathematical population and quantitative genetics with studies of how genetic variation in natural populations affects developmental processes. This micro-evo-devo synthesis requires model organisms with which to ask empirical questions. Threespine stickleback fish (Gasterosteus aculeatus), long a model for studying behavior, ecology and evolution, is emerging as a prominent model micro-evo-devo system. Research on stickleback over the last decade has begun to address the genetic basis of morphological variation and sex determination, and much of this work has important implications for understanding the genetics of speciation. In this paper we review recent threespine stickleback micro-evo-devo results, and outline the resources that have been developed to make this synthesis possible. The prospects for stickleback research to speed the micro-(and macro-) evo-devo syntheses are great, and this workhorse model system is well situated to continue contributing to our understanding of the generation of diversity in organismal form for many more decades.  相似文献   
63.
Cockram J  Mackay IJ  O'Sullivan DM 《Genetics》2007,177(4):2535-2539
Nonhomologous repair of double-stranded breaks, although fundamental to the maintenance of genomic integrity in all eukaryotes, has received little attention as to its evolutionary consequences in the generation and selection of phenotypic diversity. Here we document the role of illegitimate recombination in the creation of novel alleles in VRN1 orthologs selected to confer adaptation to annual cropping systems in barley and wheat.  相似文献   
64.
Phytochromes are red/far red light photochromic photoreceptors that direct many photosensory behaviors in the bacterial, fungal, and plant kingdoms. They consist of an N-terminal domain that covalently binds a bilin chromophore and a C-terminal region that transmits the light signal, often through a histidine kinase relay. Using x-ray crystallography, we recently solved the first three-dimensional structure of a phytochrome, using the chromophore-binding domain of Deinococcus radiodurans bacterial phytochrome assembled with its chromophore, biliverdin IXalpha. Now, by engineering the crystallization interface, we have achieved a significantly higher resolution model. This 1.45A resolution structure helps identify an extensive buried surface between crystal symmetry mates that may promote dimerization in vivo. It also reveals that upon ligation of the C3(2) carbon of biliverdin to Cys(24), the chromophore A-ring assumes a chiral center at C2, thus becoming 2(R),3(E)-phytochromobilin, a chemistry more similar to that proposed for the attached chromophores of cyanobacterial and plant phytochromes than previously appreciated. The evolution of bacterial phytochromes to those found in cyanobacteria and higher plants must have involved greater fitness using more reduced bilins, such as phycocyanobilin, combined with a switch of the attachment site from a cysteine near the N terminus to one conserved within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. From analysis of site-directed mutants in the D. radiodurans phytochrome, we show that this bilin preference was partially driven by the change in binding site, which ultimately may have helped photosynthetic organisms optimize shade detection. Collectively, these three-dimensional structural results better clarify bilin/protein interactions and help explain how higher plant phytochromes evolved from prokaryotic progenitors.  相似文献   
65.
66.
Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD): tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2) die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau) in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576) with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.  相似文献   
67.
Objective: The purpose of this study was to examine the relationships among fatness and aerobic fitness on indices of insulin resistance and sensitivity in children. Research Design and Methods: A total of 375 children (193 girls and 182 boys) 7 to 9 years of age were categorized by weight as normal‐weight, overweight, or obese and by aerobic fitness based on a submaximal physical working capacity test (PWC). Fasting blood glucose (GLU) and insulin (INS) were used to calculate various indices of insulin sensitivity (GLU/INS), the homeostasis model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI). Surrogate measures of pancreatic β cell function included the insulinogenic index (INS/GLU) and the HOMA estimate of pancreatic β‐cell function (HOMA %B). Results: Insulin sensitivity and secretion variables were significantly different between the normal‐weight children and the overweight and obese subjects. Fasting insulin (FI), HOMA, QUICKI, and INS/GLU were significantly different between the overweight and obese subjects. Likewise, the high fitness group possessed a better insulin sensitivity profile. In general, the normal‐weight–high fit group possessed the best insulin sensitivity profile and the obese‐unfit group possessed the worst insulin sensitivity profile. Several significant differences existed among the six fat‐fit groups. Of particular note are the differences within BMI groups by fitness level and the comparison of values between the normal‐weight–unfit subjects and the overweight and obese subjects with high fitness. Conclusions: The results indicate that aerobic fitness attenuates the difference in insulin sensitivity within BMI categories, thus emphasizing the role of fitness even among overweight and obese children.  相似文献   
68.
69.
70.
As cell therapies advance from research laboratories to clinical application, there is the need to transport cells and tissues across long distances while maintaining cell viability and function. Currently cells are successfully stored and shipped under liquid nitrogen vapor. The ability to store these cells in the desiccated state at ambient temperature would provide tremendous economic and practical advantage. Human mesenchymal stem cells (hMSCs) have broad potential uses in tissue engineering and regeneration since they can differentiate along multiple lineages and support hematopoeisis. The current research applied recent technological advances in the dehydration and storage of human fibroblasts to hMSCs. Three conditions were tested: air-dried, air-dried and stored under vacuum (vacuum only), and incubated with 50 mM trehalose + 3% glycerol and then air-dried and stored under vacuum (vacuum + trehalose). Plates containing dehydrated hMSCs were shipped from San Diego to Baltimore overnight in separate FedEx cardboard boxes. The hMSCs were rehydrated with 3 ml of hMSC medium and were able to regain their spindle-shaped morphology and adhesive capability. In addition, they maintained high viability and proliferation capacity. Rehydrated and passaged cells continued to express the characteristic hMSC surface antigen panel. Additionally, cells showed constitutive levels of mRNA for a stromal factor and, when exposed to reagents known to induce differentiation, demonstrated upregulation of two tissue-specific messages indicative of differentiation potential for fat and bone. While our preliminary findings are encouraging, we still need to address consistency and duration of storage by considering factors such as cell water content, oxygen concentration, and the presence of free radicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号