首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2340篇
  免费   217篇
  2023年   7篇
  2022年   16篇
  2021年   44篇
  2020年   29篇
  2019年   36篇
  2018年   31篇
  2017年   55篇
  2016年   73篇
  2015年   144篇
  2014年   165篇
  2013年   175篇
  2012年   220篇
  2011年   230篇
  2010年   156篇
  2009年   108篇
  2008年   169篇
  2007年   172篇
  2006年   148篇
  2005年   162篇
  2004年   104篇
  2003年   104篇
  2002年   83篇
  2001年   20篇
  2000年   10篇
  1999年   16篇
  1998年   15篇
  1997年   8篇
  1996年   11篇
  1995年   11篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1981年   2篇
排序方式: 共有2557条查询结果,搜索用时 15 毫秒
151.
Numerous marine sponges harbor enormous amounts of as-yet-uncultivated bacteria in their tissues. There is increasing evidence that these symbionts play an important role in the synthesis of protective metabolites, many of which are of great pharmacological interest. In this study, genes for the biosynthesis of polyketides, one of the most important classes of bioactive natural products, were systematically investigated in 20 demosponge species from different oceans. Unexpectedly, the sponge metagenomes were dominated by a ubiquitously present, evolutionarily distinct, and highly sponge-specific group of polyketide synthases (PKSs). Open reading frames resembling animal fatty acid genes were found on three corresponding DNA regions isolated from the metagenomes of Theonella swinhoei and Aplysina aerophoba. Their architecture suggests that methyl-branched fatty acids are the metabolic product. According to a phylogenetic analysis of housekeeping genes, at least one of the PKSs belongs to a bacterium of the Deinococcus-Thermus phylum. The results provide new insights into the chemistry of sponge symbionts and allow inference of a detailed phylogeny of the diverse functional PKS types present in sponge metagenomes. Based on these qualitative and quantitative data, we propose a significantly simplified strategy for the targeted isolation of biomedically relevant PKS genes from complex sponge-symbiont associations.  相似文献   
152.
153.
154.
The bladder urothelium not only provides a diffusion barrier but it also serves a sensor function and releases signalling molecules that are considered to act in a paracrine and autocrine fashion, e.g. by acetylcholine. Its actions are conferred by two classes of receptors, i.e. G-protein-coupled muscarinic receptors (MR) and ionotropic nicotinic receptors (nAChR). In this study we set out to determine the expression and distribution of all MR subtypes (M1R-M5R) and nAChR alpha-subunits 7, 9 and 10 in the human urothelium by means of RT-PCR and immunohistochemistry, respectively. Real-time RT-PCR revealed a rank order of MR subtype expression of M2R>M3R=M5R>M4R=M1R. Immunohistochemistry demonstrated differential distribution patterns with M1R being restricted to basal cells, M2R nearly exclusively found in umbrella cells, whereas M3R and M4R were homogenously distributed and M5R was seen in a decreasing gradient from luminal to basal. As for nAChR alpha-subunits, rank order of expression is alpha7>alpha10>alpha9, and they were observed throughout the urothelium with a gradient decreasing from luminal to basal in intensity. In conclusion, the human urothelium carries multiple cholinergic receptor subtypes, with predominant expression of M2R, M3R and alpha7-nAChR. Their distribution as well as that of the less expressed subtypes is layer-specific in the urothelium. In view of the multiplicity of pathways to which different cholinergic receptor subtypes are coupled, we propose that this layer-specific distribution serves to stratify cholinergic regulation of human urothelial function.  相似文献   
155.
Population-based data on sexually transmitted infections (STI), bacterial vaginosis (BV), and candidiasis reflect the epidemiological situation more accurately than studies performed in specific populations, but such data are scarce. To determine the prevalence of STI, BV, and candidiasis among women of reproductive age from a resource-poor community in Northeast Brazil, a population-based cross sectional study was undertaken. All women from seven hamlets and the centre of Pacoti municipality in the state of Ceará, aged 12 to 49 years, were invited to participate. The women were asked about socio-demographic characteristics and genital symptoms, and thereafter examined gynaecologically. Laboratory testing included polymerase chain reaction (PCR) for human papillomavirus (HPV), ligase chain reaction (LCR) for Chlamydia trachomatis and Neisseria gonorrhoeae, ELISA for human immunodeficiency virus (HIV), venereal disease research laboratory (VDRL) and fluorescent treponema antibody absorption test (FTA-ABS) for syphilis, and analysis of wet mounts, gram stains and Pap smears for trichomoniasis, candidiasis, and BV. Only women who had initiated sexual life were included in the analysis (n = 592). The prevalences of STI were: HPV 11.7% (95% confidence interval: 9.3-14.7), chlamydia 4.5% (3.0-6.6), trichomoniasis 4.1% (2.7-6.1), gonorrhoea 1.2% (0.5-2.6), syphilis 0.2% (0.0-1.1), and HIV 0%. The prevalence of BV and candidiasis was 20% (16.9-23.6) and 12.5% (10.0-15.5), respectively. The most common gynaecological complaint was lower abdominal pain. STI are common in women in rural Brazil and represent an important health threat in view of the HIV pandemic.  相似文献   
156.
The functional S-layer protein gene slfB of the uranium mining waste pile isolate Bacillus sphaericus JG-A12 was cloned as a polymerase chain reaction product into the expression vector pET Lic/Ek 30 and heterologously expressed in Escherichia coli Bl21(DE3). The addition of His tags to the N and C termini enabled the purification of the recombinant protein by Ni-chelating chromatography. The Ni binding capacity of the His-tagged recombinant S-layer protein was compared with that of the wild-type S layer. The inductively coupled plasma mass spectrometry analyses demonstrate a significantly enhanced Ni binding capability of the recombinant protein. In addition, the self-assembling properties of the purified modified S-layer proteins were studied by light microscopy and scanning electron microscopy. Whereas the wild-type S-layer proteins re-assembled into regular cylindric structures, the recombinant S-layer proteins reassembled into regular sheets that formed globular agglomerating structures. The nanoporous structure of the protein meshwork, together with its enhanced Ni binding capacity, makes the recombinant S-layer attractive as a novel self-assembling biological template for the fabrication of metal nanoclusters and construction of nanomaterials that are of technical interest.  相似文献   
157.
Agrocybe aegerita peroxidase (AaP) is a versatile heme-thiolate protein that can act as a peroxygenase and catalyzes, among other reactions, the hydroxylation of aromatic rings. This paper reports a rapid and selective spectrophotometric method for directly detecting aromatic hydroxylation by AaP. The weakly activated aromatic compound naphthalene served as the substrate that was regioselectively converted into 1-naphthol in the presence of the co-substrate hydrogen peroxide. Formation of 1-naphthol was followed at 303 nm (ɛ 303 = 2,010 M−1 cm−1), and the apparent Michaelis–Menten (K m) and catalytic (k cat) constants for the reaction were estimated to be 320 μM and 166 s−1, respectively. This method will be useful in screening of fungi and other microorganisms for extracellular peroxygenase activities and in comparing and assessing different catalytic activities of haloperoxidase–peroxygenases.  相似文献   
158.
Inhibitory molecules derived from CNS myelin and glial scar tissue are major causes for insufficient functional regeneration in the mammalian CNS. A multitude of these molecules signal through the Rho/Rho kinase (ROCK) pathway. We evaluated three inhibitors of ROCK, Y- 27632, Fasudil (HA-1077), and Dimethylfasudil (H-1152), in models of neurite outgrowth in vitro. We show, that all three ROCK inhibitors partially restore neurite outgrowth of Ntera-2 neurons on the inhibitory chondroitin sulphate proteoglycan substrate. In the rat optic nerve crush model Y-27632 dose-dependently increased regeneration of retinal ganglion cell axons in vivo. Application of Dimethylfasudil showed a trend towards increased axonal regeneration in an intermediate concentration. We demonstrate that inhibition of ROCK can be an effective therapeutic approach to increase regeneration of CNS neurons. The selection of a suitable inhibitor with a broad therapeutic window, however, is crucial in order to minimize unwanted side effects and to avoid deleterious effects on nerve fiber growth.  相似文献   
159.
The neurotrophin receptor tropomyosin-related kinase A (TrkA) and its ligand nerve growth factor (NGF) are expressed in astrocytomas, and an inverse association of TrkA expression with malignancy grade was described. We hypothesized that TrkA expression might confer a growth disadvantage to glioblastoma cells. To analyze TrkA function and signaling, we transfected human TrkA cDNA into the human glioblastoma cell line G55. We obtained three stable clones, all of which responded with striking cytoplasmic vacuolation and subsequent cell death to NGF. Analyzing the mechanism of cell death, we could exclude apoptosis and cellular senescence. Instead, we identified several indications of autophagy: electron microscopy showed typical autophagic vacuoles; acridine orange staining revealed acidic vesicular organelles; acidification of acidic vesicular organelles was prevented using bafilomycin A1; cells displayed arrest in G2/M; increased processing of LC3 occurred; vacuolation was prevented by the autophagy inhibitor 3-methyladenine; no caspase activation was detected. We further found that both activation of ERK and c-Jun N-terminal kinase but not p38 were involved in autophagic vacuolation. To conclude, we identified autophagy as a novel mechanism of NGF-induced cell death. Our findings suggest that TrkA activation in human glioblastomas might be beneficial therapeutically, especially as several of the currently used chemotherapeutics also induce autophagic cell death.  相似文献   
160.
The COP9 signalosome (CSN) is a conserved protein complex that regulates assembly and activity of cullin-RING ubiquitin ligases (CRLs). Ubiquitin-dependent degradation of the NF-kappaB inhibitor IkappaBalpha preceeds nuclear translocation of NF-kappaB. For the first time, we show here an inducible interaction of the CSN with IkappaBalpha and that the CSN controls IkappaBalpha and NF-kappaB activity. Strikingly, disruption of the CSN by a small interfering RNA-mediated knockdown of single CSN subunits results in a reduced re-accumulation of IkappaBalpha and prolonged nuclear translocation of NF-kappaB in TNFalpha-stimulated cells. The control of IkappaBalpha by the CSN is regulated by deubiquitinylation of IkappaBalpha conferred by the CSN-associated deubiquitinylase USP15. Protein expression levels of cullin1 and the CRL substrate adapter beta-TrCP are reduced in nonstimulated cells with a disrupted function of the CSN, which might account for an impaired basal turnover of IkappaBalpha. We propose that the CSN controls both CRL activity and stability of the CRL substrate IkappaBalpha. In consequence, basal and signal-induced CRL-dependent turnover of IkappaBalpha is precisely adapted to specific cellular needs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号