首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2339篇
  免费   216篇
  2023年   7篇
  2022年   15篇
  2021年   44篇
  2020年   29篇
  2019年   36篇
  2018年   31篇
  2017年   55篇
  2016年   73篇
  2015年   143篇
  2014年   164篇
  2013年   175篇
  2012年   220篇
  2011年   230篇
  2010年   156篇
  2009年   108篇
  2008年   169篇
  2007年   172篇
  2006年   148篇
  2005年   162篇
  2004年   104篇
  2003年   104篇
  2002年   83篇
  2001年   20篇
  2000年   10篇
  1999年   16篇
  1998年   15篇
  1997年   8篇
  1996年   11篇
  1995年   12篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1981年   2篇
排序方式: 共有2555条查询结果,搜索用时 15 毫秒
131.
132.
Triple A syndrome is caused by mutations in AAAS encoding the protein ALADIN. We investigated the role of ALADIN in the human adrenocortical cell line NCI-H295R1 by either over-expression or down-regulation of ALADIN. Our findings indicate that AAAS knock-down induces a down-regulation of genes coding for type II microsomal cytochrome P450 hydroxylases CYP17A1 and CYP21A2 and their electron donor enzyme cytochrome P450 oxidoreductase, thereby decreasing biosynthesis of precursor metabolites required for glucocorticoid and androgen production. Furthermore we demonstrate that ALADIN deficiency leads to increased susceptibility to oxidative stress and alteration in redox homeostasis after paraquat treatment. Finally, we show significantly impaired nuclear import of DNA ligase 1, aprataxin and ferritin heavy chain 1 in ALADIN knock-down cells. We conclude that down-regulating ALADIN results in decreased oxidative stress response leading to alteration in steroidogenesis, highlighting our knock-down cell model as an important in-vitro tool for studying the adrenal phenotype in triple A syndrome.  相似文献   
133.
Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres.  相似文献   
134.
Huntington’s disease (HD) is an inherited progressive neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin gene (HTT). The primary neuropathology of HD has been attributed to the preferential degeneration of medium spiny neurons (MSN) in the striatum. Reports on striatal neurogenesis have been a subject of debate; nevertheless, it should be considered as an endogenous attempt to repair the brain. The subventricular zone (SVZ) might offer a close-by region to supply the degenerated striatum with new cells. Previously, we have demonstrated that R6/2 mice, a widely used preclinical model representing an early onset HD, showed reduced olfactory bulb (OB) neurogenesis but induced striatal migration of neuroblasts without affecting the proliferation of neural progenitor cell (NPCs) in the SVZ. The present study revisits these findings, using a clinically more relevant transgenic rat model of late onset HD (tgHD rats) carrying the human HTT gene with 51 CAG repeats and mimicking many of the neuropathological features of HD seen in patients. We demonstrate that cell proliferation is reduced in the SVZ and OB of tgHD rats compared to WT rats. In the OB of tgHD rats, although cell survival was reduced, the frequency of neuronal differentiation was not altered in the granule cell layer (GCL) compared to the WT rats. However, an increased frequency of dopamenergic neuronal differentiation was noticed in the glomerular layer (GLOM) of tgHD rats. Besides this, we observed a selective proliferation of neuroblasts in the adjacent striatum of tgHD rats. There was no evidence for neuronal maturation and survival of these striatal neuroblasts. Therefore, the functional role of these invading neuroblasts still needs to be determined, but they might offer an endogenous alternative for stem or neuronal cell transplantation strategies.  相似文献   
135.
BackgroundHIV-infected persons have increased risk of MRSA colonization and skin and soft-tissue infections (SSTI). However, no large clinical trial has examined the utility of decolonization procedures in reducing MRSA colonization or infection among community-dwelling HIV-infected persons.Methods550 HIV-infected adults at four geographically diverse US military HIV clinics were prospectively screened for MRSA colonization at five body locations every 6 months during a 2-year period. Those colonized were randomized in a double-blind fashion to nasal mupirocin (Bactroban) twice daily and hexachlorophene (pHisoHex) soaps daily for 7 days compared to placeboes similar in appearance but without specific antibacterial activity. The primary endpoint was MRSA colonization at 6-months post-randomization; secondary endpoints were time to MRSA clearance, subsequent MRSA infections/SSTI, and predictors for MRSA clearance at the 6-month time point.ResultsForty-nine (9%) HIV-infected persons were MRSA colonized and randomized. Among those with 6-month colonization data (80% of those randomized), 67% were negative for MRSA colonization in both groups (p = 1.0). Analyses accounting for missing 6-month data showed no significant differences could have been achieved. In the multivariate adjusted models, randomization group was not associated with 6-month MRSA clearance. The median time to MRSA clearance was similar in the treatment vs. placebo groups (1.4 vs. 1.8 months, p = 0.35). There was no difference on subsequent development of MRSA infections/SSTI (p = 0.89). In a multivariable model, treatment group, demographics, and HIV-specific factors were not predictive of MRSA clearance at the 6-month time point.ConclusionA one-week decolonization procedure had no effect on MRSA colonization at the 6-month time point or subsequent infection rates among community-dwelling HIV-infected persons. More aggressive or novel interventions may be needed to reduce the burden of MRSA in this population.

Trial Registration

ClinicalTrials.gov NCT00631566  相似文献   
136.
137.
Pelargonium sidoides is a medical herb and respective extracts are used very frequently for the treatment of respiratory tract infections. However, the effects of Pelargonium sidoides and a special extract prepared from its roots (EPs 7630) on human immune cells are not fully understood. Here we demonstrate that EPs 7630 induced a rapid and dose-dependent production of TNF-α, IL-6, and IL-10 by human blood immune cells. This EPs 7630-induced cytokine profile was more pro-inflammatory in comparison with the profile induced by viral or bacterial infection-mimicking agents. The search for EPs 7630 target cells revealed that T-cells did not respond to EPs 7630 stimulation by production of TNF-α, IL-6, or IL-10. Furthermore, pretreatment of T-cells with EPs 7630 did not modulate their TNF-α, IL-6, and IL-10 secretion during subsequent activation. In contrast to lymphocytes, monocytes showed clear intracellular TNF-α staining after EPs 7630 treatment. Accordingly, EPs 7630 predominantly provoked activation of MAP kinases and inhibition of p38 strongly reduced the monocyte TNF-α production. The pretreatment of blood immune cells with EPs 7630 lowered their secretion of TNF-α and IL-10 and caused an IL-6 dominant response during second stimulation with viral or bacterial infection-mimicking agents. In summary, we demonstrate that EPs 7630 activates human monocytes, induces MAP kinase-dependent pro-inflammatory cytokines in these cells, and specifically modulates their production capacity of mediators known to lead to an increase of acute phase protein production in the liver, neutrophil generation in the bone marrow, and the generation of adaptive Th17 and Th22 cells.  相似文献   
138.

Background

30 years ago, the potential of bispecific antibodies to engage cytotoxic T cells for the lysis of cancer cells was discovered. Today a variety of bispecific antibodies against diverse cell surface structures have been developed, the majority of them produced in mammalian cell culture systems. Beside the r28M, described here, no such bispecific antibody is known to be expressed by transgenic livestock, although various biologicals for medical needs are already harvested—mostly from the milk—of these transgenics. In this study we investigated the large-scale purification and biological activity of the bispecific antibody r28M, expressed in the blood of transgenic cattle. This tandem single-chain variable fragment antibody is designed to target human CD28 and the melanoma/glioblastoma-associated cell surface chondroitin sulfate proteoglycan 4 (CSPG4).

Results

With the described optimized purification protocol an average yield of 30 mg enriched r28M fraction out of 2 liters bovine plasma could be obtained. Separation of this enriched fraction by size exclusion chromatography into monomers, dimers and aggregates and further testing regarding the biological activity revealed the monomer fraction as being the most appropriate one to continue working with. The detailed characterization of the antibody’s activity confirmed its high specificity to induce the killing of CSPG4 positive cells. In addition, first insights into tumor cell death pathways mediated by r28M-activated peripheral blood mononuclear cells were gained. In consideration of possible applications in vivo we also tested the effect of the addition of different excipients to r28M.

Conclusion

Summing up, we managed to purify monomeric r28M from bovine plasma in a large-scale preparation and could prove that its biological activity is unaffected and still highly specific and thus, might be applicable for the treatment of melanoma.  相似文献   
139.
Thymic development of αβ T lymphocytes into invariant natural killer (NK) T cells depends on their selection via agonistic lipid antigen presented by CD1d. If successful, newly selected NKT cells gain effector functions already in the thymus. Some γδ T cell subsets also acquire effector functions in the thymus. However, it is not clear whether agonistic TCR stimulation is involved in thymic γδ T cell selection and development. Here we combine two genetic models to address this question. MiR-181a/b-1–/–mice, which show impaired agonistic T cell selection of invariant αβ NKT cells, were crossed to Tcrd-H2BeGFP reporter mice to monitor selection, intra-thymic expansion and differentiation of γδ T cells. We found that miR-181a/b-1-deficiency had no effect on numbers of thymic γδ T cell or on their differentiation towards an IL-17- or IFN-γ-producing effector phenotype. Also, the composition of peripheral lymph node γδ T cells was not affected by miR-181a/b-1-deficiency. Dendritic epidermal γδ T cells were normally present in knock-out animals. However, we observed elevated frequencies and numbers of γδ NKT cells in the liver, possibly because γδ NKT cells can expand and replace missing αβ NKT cells in peripheral niches. In summary, we investigated the role of miR-181a/b-1 for selection, intrathymic development and homeostasis of γδ T cells. We conclude that miR-181a/b-1-dependent modulation of T cell selection is not critically required for innate development of γδ NKT cells or of any other γδ T cell subtypes.  相似文献   
140.
Bacteria that have adapted to nutrient‐rich, stable environments are typically characterized by reduced genomes. The loss of biosynthetic genes frequently renders these lineages auxotroph, hinging their survival on an environmental uptake of certain metabolites. The evolutionary forces that drive this genome degradation, however, remain elusive. Our analysis of 949 metabolic networks revealed auxotrophies are likely highly prevalent in both symbiotic and free‐living bacteria. To unravel whether selective advantages can account for the rampant loss of anabolic genes, we systematically determined the fitness consequences that result from deleting conditionally essential biosynthetic genes from the genomes of Escherichia coli and Acinetobacter baylyi in the presence of the focal nutrient. Pairwise competition experiments with each of 20 mutants auxotrophic for different amino acids, vitamins, and nucleobases against the prototrophic wild type unveiled a pronounced, concentration‐dependent growth advantage of around 13% for virtually all mutants tested. Individually deleting different genes from the same biosynthesis pathway entailed gene‐specific fitness consequences and loss of the same biosynthetic genes from the genomes of E. coli and A. baylyi differentially affected the fitness of the resulting auxotrophic mutants. Taken together, our findings suggest adaptive benefits could drive the loss of conditionally essential biosynthetic genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号