首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   31篇
  国内免费   1篇
  2023年   1篇
  2022年   4篇
  2021年   10篇
  2020年   7篇
  2019年   1篇
  2018年   10篇
  2017年   2篇
  2016年   11篇
  2015年   15篇
  2014年   23篇
  2013年   27篇
  2012年   24篇
  2011年   28篇
  2010年   17篇
  2009年   23篇
  2008年   23篇
  2007年   22篇
  2006年   18篇
  2005年   25篇
  2004年   14篇
  2003年   20篇
  2002年   15篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   11篇
  1978年   9篇
  1977年   6篇
  1976年   10篇
  1975年   6篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有439条查询结果,搜索用时 15 毫秒
371.
The Presenilins are part of the gamma-secretase complex that is involved in the regulated intramembrane proteolysis of amyloid precursor protein and other type I integral membrane proteins. Nicastrin, Pen-2, and Aph1 are the other proteins of this complex. The Presenilins probably contribute the catalytic activity to the protease complex. However, several investigators reported normal Abeta-peptide generation in cells expressing Presenilins mutated at the putative catalytic site residue Asp-257, contradicting this hypothesis. Because endogenously expressed wild type Presenilin could contribute to residual gamma-secretase activity in these experiments, we have reinvestigated the problem by expressing mutated Presenilins in a Presenilin-negative cell line. We confirm that Presenilins with mutated Asp residues are catalytically inactive. Unexpectedly, these mutated Presenilins are still partially processed into amino- and carboxyl-terminal fragments by a "Presenilinase"-like activity. They are also able to rescue Pen-2 expression and Nicastrin glycosylation in Presenilin-negative cells and become incorporated into large approximately 440-kDa complexes as assessed by blue native gel electrophoresis. Our study demonstrates that the catalytic activity of Presenilin and its other functions in the generation, stabilization, and transport of the gamma-secretase complex can be separated and extends the concept that Presenilins are multifunctional proteins.  相似文献   
372.
The bacterial community composition of a linuron-degrading enrichment culture and the role of the individual strains in linuron degradation have been determined by a combination of methods, such as denaturing gradient gel electrophoresis of the total 16S rRNA gene pool, isolation and identification of strains, and biodegradation assays. Three strains, Variovorax sp. strain WDL1, Delftia acidovorans WDL34, and Pseudomonas sp. strain WDL5, were isolated directly from the linuron-degrading culture. In addition, subculture of this enrichment culture on potential intermediates in the degradation pathway of linuron (i.e., N,O-dimethylhydroxylamine and 3-chloroaniline) resulted in the isolation of, respectively, Hyphomicrobium sulfonivorans WDL6 and Comamonas testosteroni WDL7. Of these five strains, only Variovorax sp. strain WDL1 was able to use linuron as the sole source of C, N, and energy. WDL1 first converted linuron to 3,4-dichloroaniline (3,4-DCA), which transiently accumulated in the medium but was subsequently degraded. To the best of our knowledge, this is the first report of a strain that degrades linuron further than the aromatic intermediates. Interestingly, the rate of linuron degradation by strain WDL1 was lower than that for the consortium, but was clearly increased when WDL1 was coinoculated with each of the other four strains. D. acidovorans WDL34 and C. testosteroni WDL7 were found to be responsible for degradation of the intermediate 3,4-DCA, and H. sulfonivorans WDL6 was the only strain able to degrade N,O-dimethylhydroxylamine. The role of Pseudomonas sp. strain WDL5 needs to be further elucidated. The degradation of linuron can thus be performed by a single isolate, Variovorax sp. strain WDL1, but is stimulated by a synergistic interaction with the other strains isolated from the same linuron-degrading culture.  相似文献   
373.
374.
375.
376.
Cell cycle and apoptosis   总被引:2,自引:0,他引:2  
Apoptosis and proliferation are intimately coupled. Some cell cycle regulators can influence both cell division and programmed cell death. The linkage of cell cycle and apoptosis has been recognized for c-Myc, p53, pRb, Ras, PKA, PKC, Bcl-2, NF-kappa B, CDK, cyclins and CKI. This review summarizes the different functions of the proteins presently known to control both apoptosis and cell cycle progression. These proteins can influence apoptosis or proliferation but different variables, including cell type, cellular environment and genetic background, make it difficult to predict the outcome of cell proliferation, cell cycle arrest or cell death. These important decisions of cell proliferation or cell death are likely to be controlled by more than one signal and are necessary to ensure a proper cellular response.  相似文献   
377.
Charcot-Marie-Tooth type 2B (CMT2B) is clinically characterized by marked distal muscle weakness and wasting and a high frequency of foot ulcers, infections, and amputations of the toes because of recurrent infections. CMT2B maps to chromosome 3q13-q22. We refined the CMT2B locus to a 2.5-cM region and report two missense mutations (Leu129Phe and Val162Met) in the small GTP-ase late endosomal protein RAB7 which causes the CMT2B phenotype in three extended families and in three patients with a positive family history. The alignment of RAB7 orthologs shows that both missense mutations target highly conserved amino acid residues. RAB7 is ubiquitously expressed, and we found expression in sensory and motor neurons.  相似文献   
378.
Prenylcysteine carboxymethyltransferase (pcCMT) is an enzyme that catalyzes the post-translational carboxymethylation of isoprenylated proteins ensuring a more efficient membrane attachment and proper guiding to a specific target membrane. In this paper, we report on modulation of pcCMT activity in retinoic acid (RA)-treated SH-SY5Y neuroblastoma cells using N-acetyl-S-farnesyl-L-cysteine (AFC) as artificial methyl acceptor. In addition, the methylation of endogenous proteins was followed by the vapor phase equilibrium assay and the storage phosphor screen (P-screen) technique with S-adenosyl-[3H-methyl] methionine (AdoMet) as methyl donor. Methylation of AFC was reduced to 75% of that of the control, the most prominent decrease being observed with the post-nuclear membrane fraction as enzyme source. With regard to protein methylation both screening methods yielded analogous results showing the [3H]-labeling of endogenous proteins in the 21-25kDa molecular mass (MM) range to be diminished by nearly 50%. This questions the role of protein carboxymethylation as an essential component of the differentiation process in SH-SY5Y neuroblastoma cells. The P-screen technique revealed that the methylation of other molecular mass proteins was also affected. Both S-adenosylhomocysteine (AdoHcy) and AFC (AdoHcy being the most effective) inhibited endogenous methylation. An interesting feature was that AFC inhibited the protein methylation proportionally more effective in RA-treated cells. Finally, the levels of three small guanosine-5'-triphosphate (GTP) binding proteins were screened upon differentiation showing rab3A to be increased while rhoA and H-ras were decreased.  相似文献   
379.
Most autoimmune diseases are associated with certain MHC class II haplotypes. Autoantigen-based specific immune therapy can lead either to beneficial or, in the context of inflammatory conditions, detrimental outcomes. Therefore, we designed a platform of peptides by combinatorial chemistry selected in a nonbiased Ag-independent approach for strong binding to the rat MHC class II isotype RT1.D(n) allelic product of the RT1(n) haplotype that is presenting autoantigen in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in LEW.1N rats. Peptide p17 (Ac-FWFLDNAPL-NH(2)) was capable of suppressing the induction of and also ameliorated established experimental autoimmune encephalomyelitis. MHC class II isotype and allele specificity of the therapeutic principle were demonstrated in myelin basic protein-induced experimental autoimmune encephalomyelitis in LEW rats bearing the RT1(l) haplotype. A general immunosuppressive effect of the treatment was excluded by allogeneic heart transplantation studies. In vitro studies demonstrated the blocking effect of p17 on autoantigenic T cell responses. We thus demonstrate a rational design of strong MHC class II-binding peptides with absolute isotype and allele specificity able to compete for autoantigenic sequences presented on disease-associated MHC class II molecules.  相似文献   
380.
The nicotinic acetylcholine receptor (nAChR) is the autoantigen in seropositive myasthenia gravis (MG), a T-cell-dependent B-cell-mediated autoimmune disease. The nAChR is a pentameric transmembrane receptor comprising chains. During early postnatal development the nAChR chain is replaced by the nAChR chain. We tested the myasthenogenicity in experimental autoimmune myasthenia gravis (EAMG) of the native nAChR derived from the electric ray Torpedo californica (T-nAChR) in various inbred and MHC -congenic rat strains. Differences in the disease course emerged dependent on the MHC haplotype and non-MHC genes. Interestingly, no tested rat strain was completely resistant to EAMG, but there were strong differences in disease severity mainly depending on the MHC haplotype. In the LEW non-MHC genome, the B-cell response and the severity of EAMG were dependent on the expressed MHC haplotype. This study underscores the influence of genetic factors on disease severity, disease course and on the degree of the emerging antibody responses in EAMG.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号