首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   15篇
  2021年   5篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   13篇
  2013年   9篇
  2012年   16篇
  2011年   11篇
  2010年   7篇
  2009年   15篇
  2008年   8篇
  2007年   10篇
  2006年   7篇
  2005年   10篇
  2004年   14篇
  2003年   11篇
  2002年   10篇
  2001年   2篇
  1999年   1篇
  1994年   1篇
  1988年   1篇
排序方式: 共有166条查询结果,搜索用时 46 毫秒
161.
We conducted a laboratory experiment to investigate the influence of Daphnia infochemicals on growth rate, microcystin production, colony formation and cell size of eight Microcystis strains isolated from two lakes. The strains were characterized genetically by their 16S-23S rDNA ITS sequence. The experiment was composed of four treatments: (1) a control using filtered WC medium, (2) addition of Scenedesmus obliquus culture medium filtrate, (3) addition of Daphnia magna culture medium filtrate and (4) addition of sodium octyl sulphate, a commercially available Daphnia infochemical. Our results showed that sympatric strains differed strongly for the measured functional traits, while no correlations between traits were found. Between-strain differences in growth rate, microcystin production, colony formation and cell size were generally larger than the differences in phenotypes observed between treatments. Despite this, several strains reacted to the infochemicals by changing functional trait values. Daphnia culture medium filtrate and, to a lesser extent, sodium octyl sulphate had a negative influence on the growth rate of half of the strains and stimulated microcystin production in one strain, but the latter effect was not Daphnia-specific as Scenedesmus culture medium filtrate had the same effect. Daphnia culture medium filtrate also induced colony formation in one strain. Our data suggest that Daphnia infochemicals generally have a weak influence on growth rate, microcystin production and colony formation of Microcystis strains as compared to the inter-strain variability, while existing inducible effects are highly strain-specific.  相似文献   
162.
163.
Animals communicate via a variety of sensory channels and signals. Studies on acoustic and visual communication systems suggest that differences in the physical environment contribute to the variety of signalling behaviour, with species investing in those signals that are transmitted best under the local conditions. Whether or not environmental tuning also occurs in chemical communication systems has received much less attention. In the present study, we examined the effect of several aspects of the physical environment on the chemical communication system of lacertid lizards (family Lacertidae). The numbers of femoral pores are used as a proxy reflecting how much a particular species invests in and relies upon chemical signalling. Femoral pores are specialized epidermal structures that function as a secretion channel for the waxy substance produced by glands. In some lacertid species, the secretion carries infochemicals that play an important role in social communication. The number of femoral pores varies considerably among species. We have compiled data on femoral pore numbers for 162 species and tested for the effects of climate and substrate use. After correcting for body size and taking the phylogenetic relationships among the species into account, we found no effect of climate conditions or latitude on species pore numbers. Substrate use did affect pore numbers: shrub‐climbing species tended to have fewer femoral pores than species inhabiting other substrates. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 44–57.  相似文献   
164.
165.
The high transmissibility of SARS-CoV-2 is related to abundant replication in the upper airways, which is not observed for the other highly pathogenic coronaviruses SARS-CoV and MERS-CoV. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards the human respiratory tract. First, the S proteins exhibit an intrinsic temperature preference, corresponding with the temperature of the upper or lower airways. Pseudoviruses bearing the SARS-CoV-2 spike (SARS-2-S) were more infectious when produced at 33°C instead of 37°C, a property shared with the S protein of HCoV-229E, a common cold coronavirus. In contrast, the S proteins of SARS-CoV and MERS-CoV favored 37°C, in accordance with virus preference for the lower airways. Next, SARS-2-S-driven entry was efficiently activated by not only TMPRSS2, but also the TMPRSS13 protease, thus broadening the cell tropism of SARS-CoV-2. Both proteases proved relevant in the context of authentic virus replication. TMPRSS13 appeared an effective spike activator for the virulent coronaviruses but not the low pathogenic HCoV-229E virus. Activation of SARS-2-S by these surface proteases requires processing of the S1/S2 cleavage loop, in which both the furin recognition motif and extended loop length proved critical. Conversely, entry of loop deletion mutants is significantly increased in cathepsin-rich cells. Finally, we demonstrate that the D614G mutation increases SARS-CoV-2 stability, particularly at 37°C, and, enhances its use of the cathepsin L pathway. This indicates a link between S protein stability and usage of this alternative route for virus entry. Since these spike properties may promote virus spread, they potentially explain why the spike-G614 variant has replaced the early D614 variant to become globally predominant. Collectively, our findings reveal adaptive mechanisms whereby the coronavirus spike protein is adjusted to match the temperature and protease conditions of the airways, to enhance virus transmission and pathology.  相似文献   
166.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号