首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2214篇
  免费   194篇
  2024年   1篇
  2023年   7篇
  2022年   21篇
  2021年   42篇
  2020年   31篇
  2019年   35篇
  2018年   58篇
  2017年   36篇
  2016年   77篇
  2015年   134篇
  2014年   159篇
  2013年   156篇
  2012年   225篇
  2011年   217篇
  2010年   109篇
  2009年   118篇
  2008年   166篇
  2007年   155篇
  2006年   122篇
  2005年   126篇
  2004年   99篇
  2003年   92篇
  2002年   80篇
  2001年   11篇
  2000年   12篇
  1999年   15篇
  1998年   20篇
  1997年   21篇
  1996年   9篇
  1995年   11篇
  1994年   4篇
  1993年   1篇
  1992年   8篇
  1991年   2篇
  1990年   14篇
  1989年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有2408条查询结果,搜索用时 437 毫秒
51.
In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei—the causative agent of Human African Trypanosomiasis—by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC–MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism.  相似文献   
52.
Mechanism and substrate specificity of the proton-coupled amino acid transporter 2 (PAT2, SLC36A2) have been studied so far only in heterologous expression systems such as HeLa cells and Xenopus laevis oocytes. In this study, we describe the identification of the first cell line that expresses PAT2. We cultured 3T3-L1 cells for up to 2 weeks and differentiated the cells into adipocytes in supplemented media containing 2 μM rosiglitazone. During the 14 day differentiation period the uptake of the prototype PAT2 substrate l-[3H]proline increased ~5-fold. The macro- and microscopically apparent differentiation of 3T3-L1 cells coincided with their H+ gradient-stimulated uptake of l-[3H]proline. Uptake was rapid, independent of a Na+ gradient but stimulated by an inwardly directed H+ gradient with maximal uptake occurring at pH 6.0. l-Proline uptake was found to be mediated by a transport system with a Michaelis constant (Kt) of 130 ± 10 μM and a maximal transport velocity of 4.9 ± 0.2 nmol × 5 min?1 mg of protein?1. Glycine, l-alanine, and l-tryptophan strongly inhibited l-proline uptake indicating that these amino acids also interact with the transport system. It is concluded that 3T3-L1 adipocytes express the H+-amino acid cotransport system PAT2.  相似文献   
53.
Neutral genetic structure of natural populations is primarily influenced by migration (the movement of individuals and, subsequently, their genes) and drift (the statistical chance of losing genetic diversity over time). Migration between populations is influenced by several factors, including individual behavior, physical barriers, and environmental heterogeneity among populations. However, drift is expected to be stronger in populations with low immigration rate and small effective population size. With the technological advancement in geological information systems and spatial analysis tools, landscape genetics now allows the development of realistic migration models and increased insight to important processes influencing diversity of natural populations. In this study, we investigated the relationship between landscape connectivity and genetic distance of threespine stickleback (Gasterosteus aculeatus) inhabiting a pond complex in Belgjarskógur, Northeast Iceland. We used two landscape genetic approaches (i.e., least-cost-path and isolation-by-resistance) and asked whether gene flow, as measured by genetic distance, was more strongly associated with Euclidean distance (isolation-by-distance) or with landscape connectivity provided by areas prone to flooding (as indicated by Carex sp. cover)? We found substantial genetic structure across the study area, with pairwise genetic distances among populations (DPS) ranging from 0.118 to 0.488. Genetic distances among populations were more strongly correlated with least-cost-path and isolation-by-resistance than with Euclidean distance, whereas the relative contribution of isolation-by-resistance and Euclidian distance could not be disentangled. These results indicate that migration among stickleback populations occurs via periodically flooded areas. Overall, this study highlights the importance of transient landscape elements influencing migration and genetic structure of populations at small spatial scales.  相似文献   
54.
55.
Various nonhuman primate species have been tested with prosocial games (i.e. derivates from dictator games) in order to better understand the evolutionary origin of proactive prosociality in humans. Results of these efforts are mixed, and it is difficult to disentangle true species differences from methodological artifacts. We tested 2- to 5-year-old children with a costly and a cost-free version of a prosocial game that differ with regard to the payoff distribution and are widely used with nonhuman primates. Simultaneously, we assessed the subjects’ level of Theory of Mind understanding. Prosocial behavior was demonstrated with the prosocial game, and did not increase with more advanced Theory of Mind understanding. However, prosocial behavior could only be detected with the costly version of the game, whereas the children failed the cost-free version that is most commonly used with nonhuman primates. A detailed comparison of the children’s behavior in the two versions of the game indicates that the failure was due to higher attentional demands of the cost-free version, rather than to a lack of prosociality per se. Our results thus show (i) that subtle differences in prosociality tasks can substantially bias the outcome and thus prevent meaningful species comparisons, and (ii) that like in nonhuman primates, prosocial behavior in human children does not require advanced Theory of Mind understanding in the present context. However, both developmental and comparative psychology accumulate increasing evidence for the multidimensionality of prosocial behaviors, suggesting that different forms of prosociality are also regulated differentially. For future efforts to understand the evolutionary origin of prosociality it is thus crucial to take this heterogeneity into account.  相似文献   
56.
Antibiotic resistance has been reported since the introduction of synthetic antibiotics. Bacteria, such as one of the most common nosocomial pathogens P. aeruginosa, adapt quickly to changing environmental conditions, due to their short generation time. Thus microevolutional changes can be monitored in situ. In this study, the microevolutional process of Pseudomonas aeruginosa PAO1 resistance against a recently developed novel antibacterial zinc Schiff-base (ZSB) was investigated at the proteome level. After extended exposure to ZSB the passaged strain differed in tolerance against ZSB, with the adapted P. aeruginosa PAO1 exhibiting 1.6 times higher minimal inhibitory concentration. Using Two-dimensional Difference Gel Electrophoresis, the changes in the proteome of ZSB adapted P. aeruginosa PAO1 were examined by comparison with the non-adapted P. aeruginosa PAO1. The proteome of the adapted P. aeruginosa PAO1 strain differed significantly from the non-adapted in the abundance of two proteins when both strains were grown under stressing conditions. One protein could be identified as the outer membrane protein D that plays a role in uptake of basic amino acids as well as in carbapeneme resistance. The second protein has been identified as alkyl peroxide reductase subunit F. Our data indicated a slight increase in abundance of alkyl peroxide reductase F (AhpF) in the case of ZSB passaged P. aeruginosa PAO1. Higher abundance of Ahp has been discussed in the literature as a promoter of accelerated detoxification of benzene derivatives. The observed up-regulated AhpF thus appears to be connected to an increased tolerance against ZSB. Changes in the abundance of proteins connected to oxidative stress were also found after short-time exposure of P. aeruginosa PAO1 to the ZSB. Furthermore, adapted P. aeruginosa PAO1 showed increased tolerance against hydrogen peroxide and, in addition, showed accelerated degradation of ZSB, as determined by HPLC measurements.  相似文献   
57.
Higher plant diversity is often associated with higher soil microbial biomass and diversity, which is assumed to be partly due to elevated root exudate diversity. However, there is little experimental evidence that diversity of root exudates shapes soil microbial communities. We tested whether higher root exudate diversity enhances soil microbial biomass and diversity in a plant diversity gradient, thereby negating significant plant diversity effects on soil microbial properties. We set up plant monocultures and two‐ and three‐species mixtures in microcosms using functionally dissimilar plants and soil of a grassland biodiversity experiment in Germany. Artificial exudate cocktails were added by combining the most common sugars, organic acids, and amino acids found in root exudates. We applied four different exudate cocktails: two exudate diversity levels (low‐ and high‐diversity) and two nutrient‐enriched levels (carbon‐ and nitrogen‐enriched), and a control with water only. Soil microorganisms were more carbon‐ than nitrogen‐limited. Cultivation‐independent fingerprinting analysis revealed significantly different soil microbial communities among exudate diversity treatments. Most notably and according to our hypothesis, adding diverse exudate cocktails negated the significant plant diversity effect on soil microbial properties. Our findings provide the first experimental evidence that root exudate diversity is a crucial link between plant diversity and soil microorganisms.  相似文献   
58.
59.
The scabies mite, Sarcoptes scabiei, is an obligate parasite of the skin that infects humans and other animal species, causing scabies, a contagious disease characterized by extreme itching. Scabies infections are a major health problem, particularly in remote Indigenous communities in Australia, where co-infection of epidermal scabies lesions by Group A Streptococci or Staphylococcus aureus is thought to be responsible for the high rate of rheumatic heart disease and chronic kidney disease. We collected and separately sequenced mite DNA from several pools of thousands of whole mites from a porcine model of scabies (S. scabiei var. suis) and two human patients (S. scabiei var. hominis) living in different regions of northern Australia. Our sequencing samples the mite and its metagenome, including the mite gut flora and the wound micro-environment. Here, we describe the mitochondrial genome of the scabies mite. We developed a new de novo assembly pipeline based on a bait-and-reassemble strategy, which produced a 14 kilobase mitochondrial genome sequence assembly. We also annotated 35 genes and have compared these to other Acari mites. We identified single nucleotide polymorphisms (SNPs) and used these to infer the presence of six haplogroups in our samples, Remarkably, these fall into two closely-related clades with one clade including both human and pig varieties. This supports earlier findings that only limited genetic differences may separate some human and animal varieties, and raises the possibility of cross-host infections. Finally, we used these mitochondrial haplotypes to show that the genetic diversity of individual infections is typically small with 1–3 distinct haplotypes per infestation.  相似文献   
60.
BackgroundAntenatal depression affects up to 19% of pregnant women. Some of these women are also in need of antidepressant treatment. Nevertheless, the impact of maternal antidepressant treatment and prenatal depression on the course of pregnancy, foetal development and delivery outcomes is not fully understood.MethodsWe analysed data from 24 818 women who gave birth at Kuopio University Hospital between 2002–2012. Logistic regression analysis was used to estimate associations between the use of selective serotonin reuptake inhibitors (SSRIs) during pregnancy and the progression of pregnancy, development of the foetus and delivery outcomes.ResultsAltogether, 369 (1.5%) women used SSRIs. A regression model adjusted for age, overweight, nulliparity, prior termination, miscarriages, smoking, maternal alcohol consumption, chronic illness and polyhydramnion showed that pregnant women exposed to SSRI medication had significantly lower Apgar scores at 1 minute (p < 0.0001) and 5 minutes (p < 0.0001) and more admissions to the neonatal intensive care unit (p < 0.0001) than unexposed pregnant women. In addition, exposed newborns had longer umbilical cords (p < 0.0001) than non-exposed newborns.ConclusionIn addition to the previously known associates with maternal SSRI exposure, such as lowered Apgar scores, SSRI exposure appeared to be associated with increased umbilical cord length. The observation related to increased umbilical cord length may be explained by an SSRI-induced increase in the movements of the developing foetus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号