全文获取类型
收费全文 | 1488篇 |
免费 | 115篇 |
国内免费 | 1篇 |
专业分类
1604篇 |
出版年
2024年 | 2篇 |
2023年 | 17篇 |
2022年 | 33篇 |
2021年 | 61篇 |
2020年 | 42篇 |
2019年 | 42篇 |
2018年 | 29篇 |
2017年 | 37篇 |
2016年 | 65篇 |
2015年 | 123篇 |
2014年 | 104篇 |
2013年 | 118篇 |
2012年 | 181篇 |
2011年 | 137篇 |
2010年 | 94篇 |
2009年 | 65篇 |
2008年 | 82篇 |
2007年 | 103篇 |
2006年 | 72篇 |
2005年 | 63篇 |
2004年 | 40篇 |
2003年 | 36篇 |
2002年 | 22篇 |
2001年 | 2篇 |
2000年 | 4篇 |
1999年 | 4篇 |
1998年 | 5篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1985年 | 1篇 |
1981年 | 2篇 |
1979年 | 3篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1972年 | 1篇 |
1967年 | 2篇 |
排序方式: 共有1604条查询结果,搜索用时 31 毫秒
51.
Tsukushi Kamiya Katie O'Dwyer Shinichi Nakagawa Robert Poulin 《Biological reviews of the Cambridge Philosophical Society》2014,89(1):123-134
Although a small set of external factors account for much of the spatial variation in plant and animal diversity, the search continues for general drivers of variation in parasite species richness among host species. Qualitative reviews of existing evidence suggest idiosyncrasies and inconsistent predictive power for all proposed determinants of parasite richness. Here, we provide the first quantitative synthesis of the evidence using a meta‐analysis of 62 original studies testing the relationship between parasite richness across animal, plant and fungal hosts, and each of its four most widely used presumed predictors: host body size, host geographical range size, host population density, and latitude. We uncover three universal predictors of parasite richness across host species, namely host body size, geographical range size and population density, applicable regardless of the taxa considered and independently of most aspects of study design. A proper match in the primary studies between the focal predictor and both the spatial scale of study and the level at which parasite species richness was quantified (i.e. within host populations or tallied across a host species' entire range) also affected the magnitude of effect sizes. By contrast, except for a couple of indicative trends in subsets of the full dataset, there was no strong evidence for an effect of latitude on parasite species richness; where found, this effect ran counter to the general latitude gradient in diversity, with parasite species richness tending to be higher further from the equator. Finally, the meta‐analysis also revealed a negative relationship between the magnitude of effect sizes and the year of publication of original studies (i.e. a time‐lag bias). This temporal bias may be due to the increasing use of phylogenetic correction in comparative analyses of parasite richness over time, as this correction yields more conservative effect sizes. Overall, these findings point to common underlying processes of parasite diversification fundamentally different from those controlling the diversity of free‐living organisms. 相似文献
52.
Nilda Roma Burgos Vijay Singh Te Ming Tseng Howard Black Nelson D. Young Zhongyun Huang Katie E. Hyma David R. Gealy Ana L. Caicedo 《Plant physiology》2014,166(3):1208-1220
The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management.Weedy rice (Oryza sativa), a conspecific weed of cultivated rice, is a global threat to rice production (Delouche et al., 2007). Classified as the same species as cultivated rice, it is highly competitive (Diarra et al., 1985; Pantone and Baker, 1991; Burgos et al., 2006), difficult to control without damaging cultivated rice, and can cause almost total crop failure (Diarra et al., 1985). The competition of cultivated rice with weedy rice can lead to yield losses from less than 5% to 100% (Kwon et al., 1991; Watanabe et al., 2000; Chen et al., 2004; Ottis et al., 2005; Shivrain et al., 2009b). Besides being difficult to control, weedy rice persists in rice fields because of key weedy traits, including variable emergence (Shivrain et al., 2009b), high degree of seed shattering (Eleftherohorinos, et al., 2002; Thurber et al., 2010), high diversity in seed dormancy (Do Lago, 1982; Noldin, 1995; Vidotto and Ferrero, 2000; Burgos et al., 2011; Tseng et al., 2013), and its seed longevity in soil (Goss and Brown, 1939). Weedy rice is a problem mainly in regions with large farm sizes where direct-seeded rice culture is practiced (Delouche et al., 2007). It is not a major problem in transplanted rice culture, where roguing weeds is possible and hand labor is available. The severity of the problem has increased in recent decades because of the significant shift to direct seeding from transplanting (Pandey and Velasco, 2002; Rao et al., 2007; Chauhan et al., 2013), which is driven by water scarcity (Kummu et al., 2010; Turral et al., 2011), increasing labor costs, and migration of labor to urban areas (Grimm et al., 2008).The herbicide-resistant (HR) Clearfield rice technology (Croughan, 2003) provides an option to control weedy rice in rice using imidazolinone herbicides, in particular, imazethapyr. Imidazolinones belong to group 2 herbicides, also known as ACETOLACTATE SYNTHASE (ALS) inhibitors. Examples of herbicides in this group are imazamox, imazapic, imazaquin, and imazethapyr. Developed through mutagenesis of the ALS locus (Croughan, 1998), Clearfield rice was first commercialized in 2002 in the southern U.S. rice belt (Tan et al., 2005). Low levels of natural hybridization are known to occur between the crop and weedy rice. Gene flow generally ranges from 0.003% to 0.25% (Noldin et al., 2002; Song et al., 2003; Messeguer et al., 2004; Gealy, 2005; Shivrain et al., 2007, 2008). After the adoption of Clearfield technology, resistant weedy outcrosses were soon detected in commercial fields (Fig. 1), generally after two cropping seasons of Clearfield rice, where escaped weedy rice was able to produce seed (Zhang et al., 2006; Burgos et al., 2007, 2008). Similar observations have been reported outside the United States, in other regions adopting the technology (Gressel and Valverde, 2009; Busconi et al., 2012).Open in a separate windowFigure 1.Suspected herbicide-resistant weedy rice in a rice field previously planted with Clearfield rice along the Mississippi River Delta in Arkansas. More than 10 morphotypes of weedy rice were observed in this field, with different maturity periods. In the foreground is a typical weedy rice with pale green leaves; the rice cultivar has dark green leaves. The inset shows a weedy morphotype that matured earlier than cultivated rice.Despite this complication, the adoption of Clearfield rice technology is increasing, albeit at a slower pace than that of glyphosate-resistant crops. After a decade of commercialization, 57% of the rice area in Arkansas was planted with Clearfield rice cultivars in 2013 (J. Hardke, personal communication). Clearfield technology has been very successful at controlling weedy rice, and polls among rice growers suggest that farmers have kept the problem of HR weeds in check by following the recommended stewardship practices (Burgos et al., 2008). The most notable of these are (1) implementation of herbicide programs that incorporate all possible modes of action available for rice production; (2) ensuring maximum efficacy of the herbicides used; (3) preventing seed production from escaped weedy rice, remnant weedy rice after crop harvest, or volunteer rice and weedy rice in the next crop cycle; (4) rotating Clearfield rice with other crops to break the weedy rice cycle; and (5) practicing zero tillage to avoid burying HR weedy rice seed (Burgos et al., 2008).Clearfield rice has gained a foothold in Asia, where rice cultivation originated (Londo and Schaal, 2007; Zong et al., 2007). Clearfield rice received government support for commercialization in Malaysia in 2010 (Azmi et al., 2012) because of the severity of the weedy rice problem there. Dramatic increases in rice yields (from 3.5 to 7 metric tons ha−1) were reported in Malaysia where Clearfield rice was planted (Sudianto et al., 2013). However, the risk of gene flow and evolution of resistant weedy rice populations is high in the tropics, where up to three rice crops are planted each year, and freezing temperatures, which would reduce the density of volunteer plants, do not occur.In the United States, where Clearfield technology originated and has been used for the longest time, the interaction between HR cultivated rice and weedy rice is not yet fully understood. Two main populations of weedy rice are known to occur in the southern United States and can be found in the same cultivated rice fields. These populations are genetically differentiated, are largely distinct at the phenotypic level, and have separate evolutionary origins (Reagon et al., 2010). One group tends to have straw-colored hulls and is referred to as the SH population; a second group tends to have black-colored hulls and awns and is referred to as the BHA population (Reagon et al., 2010). Genomic evidence suggests that both groups descended from cultivated ancestors but not from the tropical japonica subgroup varieties that are grown commercially in the United States. Instead, the SH group evolved from indica, a subgroup of rice commonly grown in the lowland tropics, and the BHA group descended from aus, a related cultivated subgroup typically grown in Bangladesh and the West Bengal region (Reagon et al., 2010). Weed-weed and weed-crop hybrids are also known to occur, but prior to Clearfield commercialization, these hybrids had occurred at low frequency (Reagon et al., 2010; Gealy et al., 2012). With the advent and increased adoption of Clearfield cultivars, the impact on U.S. weedy rice population structure and the prevalence of the SH and BHA groups are unknown.Efforts to predict the possible consequences of HR or genetically modified rice on weedy rice have been a subject of discussion for many years. Both weedy rice and cultivated rice are primarily self-fertilizing, but, as mentioned above, low levels of gene flow are known to occur. Additional environmental and intrinsic genetic factors can act as prezygotic and postzygotic mating barriers between cultivated and weedy rice and influence the possibility and levels of gene flow between these groups (Craig et al., 2014; Thurber et al., 2014). However, once gene flow occurs between cultivated and weedy rice, and if the resulting hybrids are favored by selection, the resulting morphological, genetic, and physiological changes in weedy rice populations can alter the way that weedy rice evolves and competes. For example, herbicide-resistant weed outcrosses in an experimental field have been observed to be morphologically diverse (Shivrain et al., 2006), with some individuals carrying major weedy traits and well adapted to rice agriculture. Such weedy plants could be more problematic than their normal weedy counterparts. Thus, introgression of crop genes into weedy populations has the potential to change the population dynamic, genetic structure, and morphological profile of weedy plants. This, in turn, must alter our crop management practices. To increase our understanding of the impact of HR rice on the evolution of weedy rice, in this article we aim to (1) assess the frequency of herbicide resistance in weedy rice in southern U.S. rice fields with a history of Clearfield use; (2) characterize the weedy attributes of resistant populations; and (3) determine the genetic origins of herbicide-resistant weeds in U.S. fields. 相似文献
53.
Mochida GH Ganesh VS Felie JM Gleason D Hill RS Clapham KR Rakiec D Tan WH Akawi N Al-Saffar M Partlow JN Tinschert S Barkovich AJ Ali B Al-Gazali L Walsh CA 《American journal of human genetics》2010,87(6):882-889
The tight junction, or zonula occludens, is a specialized cell-cell junction that regulates epithelial and endothelial permeability, and it is an essential component of the blood-brain barrier in the cerebrovascular endothelium. In addition to functioning as a diffusion barrier, tight junctions are also involved in signal transduction. In this study, we identified a homozygous mutation in the tight-junction protein gene JAM3 in a large consanguineous family from the United Arab Emirates. Some members of this family had a rare autosomal-recessive syndrome characterized by severe hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. Their clinical presentation overlaps with some reported cases of pseudo-TORCH syndrome as well as with cases involving mutations in occludin, another component of the tight-junction complex. However, massive intracranial hemorrhage distinguishes these patients from others. Homozygosity mapping identified the disease locus in this family on chromosome 11q25 with a maximum multipoint LOD score of 6.15. Sequence analysis of genes in the candidate interval uncovered a mutation in the canonical splice-donor site of intron 5 of JAM3. RT-PCR analysis of a patient lymphoblast cell line confirmed abnormal splicing, leading to a frameshift mutation with early termination. JAM3 is known to be present in vascular endothelium, although its roles in cerebral vasculature have not been implicated. Our results suggest that JAM3 is essential for maintaining the integrity of the cerebrovascular endothelium as well as for normal lens development in humans. 相似文献
54.
Sarah L. Appleby Michaelia P. Cockshell Jyotsna B. Pippal Emma J. Thompson Jeffrey M. Barrett Katie Tooley Shaundeep Sen Wai Yan Sun Randall Grose Ian Nicholson Vitalina Levina Ira Cooke Gert Talbo Angel F. Lopez Claudine S. Bonder 《PloS one》2012,7(11)
Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. 相似文献
55.
56.
Taube C Dakhama A Rha YH Takeda K Joetham A Park JW Balhorn A Takai T Poch KR Nick JA Gelfand EW 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(8):4301-4309
Following allergen challenge of sensitized mice, neutrophils are the first inflammatory cells found in bronchoalveolar lavage (BAL) fluid. To determine the underlying mechanism for their accumulation, mice were sensitized to OVA on days 0 and 14, and received, on day 28, a single intranasal challenge (s.i.n.) with either OVA or ragweed. Eight hours after the s.i.n., BAL fluid was obtained. BALB/c mice sensitized and challenged with OVA showed significantly higher total cell counts and numbers of neutrophils in BAL fluid compared to the OVA-sensitized and ragweed-challenged or nonsensitized mice. Levels of neutrophil chemokines in BAL fluid supernatants were markedly elevated in the sensitized and OVA-challenged mice; Fc epsilon RI-deficient mice showed comparable numbers of neutrophils and neutrophil chemokines in BAL fluid after s.i.n. But in sensitized mice lacking the Fc common gamma-chain and B cell-deficient mice, the number of neutrophils and levels of neutrophil chemokines in BAL fluid were significantly lower. Further, mice lacking the FcgammaRIII did not develop this early neutrophil influx. Neutrophil infiltration could be induced in naive mice following intranasal instillation of allergen combined with allergen-specific IgG1. In addition, macrophages from sensitized mice were stimulated with allergen and activated to produce neutrophil chemokines. These results demonstrate that neutrophil influx after allergen challenge requires prior sensitization, is allergen-specific, is mediated through FcgammaRIII, and is dependent on the presence of Ab. 相似文献
57.
Mariana Tinajero-Trejo Katie J. Denby Svetlana E. Sedelnikova Shahira A. Hassoubah Brian E. Mann Robert K. Poole 《The Journal of biological chemistry》2014,289(43):29471-29482
CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3−). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)3Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo. 相似文献
58.
In many animals, including humans, interactions with caring parents can have long-lasting effects on offspring sensitivity to stressors. However, whether these parental effects impact offspring fitness in nature is often unclear. In addition, despite evidence that maternal care can influence offspring behaviour via epigenetic alterations to the genome, it remains unclear whether paternal care has similar effects. Here, we show in three-spined sticklebacks, a fish in which fathers are the sole provider of offspring care, that the direct care provided by fathers affects offspring anxiety and the potential for epigenetic alterations to the offspring genome. We find that families are differentially vulnerable to early stress and fathers can compensate for this differential sensitivity with the quality of their care. This variation in paternal care is also linked to the expression in offspring brains of a DNA methyltransferase (Dnmt3a) responsible for de novo methylation. We show that these paternal effects are potentially adaptive and anxious offspring are unlikely to survive an encounter with a predator. By supplying offspring care, fathers reduce offspring anxiety thereby increasing the survival of their offspring—not in the traditional sense through resource provisioning but through an epigenetic effect on offspring behavioural development. 相似文献
59.
60.
Membrane raft actin deficiency and altered Ca2+-induced vesiculation in stomatin-deficient overhydrated hereditary stomatocytosis 总被引:1,自引:0,他引:1
Wilkinson DK Turner EJ Parkin ET Garner AE Harrison PJ Crawford M Stewart GW Hooper NM 《Biochimica et biophysica acta》2008,1778(1):125-132
In overhydrated hereditary stomatocytosis (OHSt), the membrane raft-associated stomatin is deficient from the erythrocyte membrane. We have investigated two aspects of raft structure and function in OHSt erythrocytes. First, we have studied the distribution of other membrane and cytoskeletal proteins in rafts by analysis of detergent-resistant membranes (DRMs). In normal erythrocytes, 29% of the actin was DRM-associated, whereas in two unrelated OHSt patients the DRM-associated actin was reduced to <10%. In addition, there was a reduction in the amount of the actin-associated protein tropomodulin in DRMs from these OHSt cells. When stomatin was expressed in Madin-Darby canine kidney cells, actin association with the membrane was increased. Second, we have studied Ca2+-dependent exovesiculation from the erythrocyte membrane. Using atomic force microscopy and proteomics analysis, exovesicles derived from OHSt cells were found to be increased in number and abnormal in size, and contained greatly increased amounts of the raft proteins flotillin-1 and -2 and the calcium binding proteins annexin VII, sorcin and copine 1, while the concentrations of stomatin and annexin V were diminished. Together these observations imply that the stomatin-actin association is important in maintaining the structure and in modulating the function of stomatin-containing membrane rafts in red cells. 相似文献