首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1526篇
  免费   120篇
  国内免费   1篇
  2024年   1篇
  2023年   14篇
  2022年   28篇
  2021年   62篇
  2020年   43篇
  2019年   42篇
  2018年   30篇
  2017年   37篇
  2016年   65篇
  2015年   125篇
  2014年   104篇
  2013年   120篇
  2012年   185篇
  2011年   138篇
  2010年   98篇
  2009年   65篇
  2008年   87篇
  2007年   107篇
  2006年   78篇
  2005年   67篇
  2004年   44篇
  2003年   36篇
  2002年   26篇
  2001年   3篇
  2000年   7篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1990年   1篇
  1988年   1篇
  1981年   2篇
  1979年   3篇
  1976年   1篇
  1975年   3篇
排序方式: 共有1647条查询结果,搜索用时 547 毫秒
11.
Identifying, assessing, and ranking the impact of individual threats is fundamental to the conservation and recovery of rare and endangered species. In this analysis, we quantify not only the frequency of specific causes-of-death (CODs) among Main Hawaiian Island (MHI) monk seals, but also assess the impact of individual CODs on the intrinsic growth rate, λ, of the MHI population. We used gross necropsy results, histopathology, and other evidence to assign probabilities of 11 COD types to each mortality and then used Monte Carlo sampling to evaluate the influence of each COD on λ. By right censoring realizations involving specific CODs, we were able to estimate λ (and its associated uncertainty) when CODs were selectively removed from influencing survival. Applying the analysis to all known and inferred deaths believed to have occurred 2004–2019, the CODs with the largest influence on λ were anthropogenic trauma, anthropogenic drowning, and protozoal disease. In aggregate, anthropogenic CODs had a larger effect on the growth rate than either natural or disease CODs. Possible bias associated with differential carcass detection, recovery, and COD classification are discussed.  相似文献   
12.
13.
The myometrium is the smooth muscle layer of the uterus that generates the contractions that drive processes such as menstruation and childbirth. Aberrant contractions of the myometrium can result in preterm birth, insufficient progression of labor, or other difficulties that can lead to maternal or fetal complications or even death. To investigate the underlying mechanisms of these conditions, the most common model systems have conventionally been animal models and human tissue strips, which have limitations mostly related to relevance and scalability, respectively. Myometrial smooth muscle cells have also been isolated from patient biopsies and cultured in vitro as a more controlled experimental system. However, in vitro approaches have focused primarily on measuring the effects of biochemical stimuli and neglected biomechanical stimuli, despite the extensive evidence indicating that remodeling of tissue rigidity or excessive strain is associated with uterine disorders. In this review, we first describe the existing approaches for modeling human myometrium with animal models and human tissue strips and compare their advantages and disadvantages. Next, we introduce existing in vitro techniques and assays for assessing contractility and summarize their applications in elucidating the role of biochemical or biomechanical stimuli on human myometrium. Finally, we conclude by proposing the translation of “organ on chip” approaches to myometrial smooth muscle cells as new paradigms for establishing their fundamental mechanobiology and to serve as next-generation platforms for drug development.  相似文献   
14.
Conformational diseases are associated with the conversion of normal proteins into aggregation-prone toxic conformers with structures similar to that of β-amyloid. Spatial distribution of amyloid-like proteins into intracellular quality control centers can be beneficial, but cellular mechanisms for protective aggregation remain unclear. We used a high-copy suppressor screen in yeast to identify roles for the Hsp70 system in spatial organization of toxic polyglutamine-expanded Huntingtin (Huntingtin with 103Q glutamine stretch [Htt103Q]) into benign assemblies. Under toxic conditions, Htt103Q accumulates in unassembled states and speckled cytosolic foci. Subtle modulation of Sti1 activity reciprocally affects Htt toxicity and the packaging of Htt103Q into foci. Loss of Sti1 exacerbates Htt toxicity and hinders foci formation, whereas elevation of Sti1 suppresses Htt toxicity while organizing small Htt103Q foci into larger assemblies. Sti1 also suppresses cytotoxicity of the glutamine-rich yeast prion [RNQ+] while reorganizing speckled Rnq1–monomeric red fluorescent protein into distinct foci. Sti1-inducible foci are perinuclear and contain proteins that are bound by the amyloid indicator dye thioflavin-T. Sti1 is an Hsp70 cochaperone that regulates the spatial organization of amyloid-like proteins in the cytosol and thereby buffers proteotoxicity caused by amyloid-like proteins.  相似文献   
15.
Arts education partnerships have become an important means for developing and sustaining school arts programs that engage students, teachers, and communities. Tapping into additional perspectives, resources, and support from arts agencies and postsecondary institutions, arts education partnerships strengthen arts education infrastructure within schools and develop a web of sustainable relationships whereby stakeholders mutually benefit. This article provides a snapshot of an arts education partnership in action that develops creative and cultural competencies in middle school students through a theme-based collaborative project approach. This article informs policy by recommending support for arts education partnerships that develop social and creative capital among schools and postsecondary institutions and within the communities surrounding these institutions.  相似文献   
16.
The supratidal amphipod Talorchestia longicornis Say has a circadian rhythm in activity, in which it is active on the substrate surface at night and inactive in burrows during the day. The present study determined: (1) the circadian rhythms in individual versus groups of amphipods; (2) the range of temperature cycles that entrain the circadian rhythm; (3) entrainment by high-temperature cycles versus light?:?dark cycles, and (4) seasonal substrate temperature cycles. The circadian rhythm was determined by monitoring temporal changes in surface activity using a video system. Individual and groups of amphipods have similar circadian rhythms. Entrainment occurred only to temperature cycles that included temperatures below 20°C (10–20, 15–20, 17–19, 15–25°C) but not to temperatures above 20°C (20–25, 20–30°C), and required only a 2°C temperature cycle (17–19°C). Diel substrate temperatures were above 20°C in the summer and below 20°C during the winter. Upon simultaneous exposure to a diel high-temperature cycle (20–30°C) and a light?:?dark cycle phased differently, amphipods entrained to the light?:?dark cycle. Past studies found that a temperature cycle below 20°C overrode the light?:?dark cycle for entrainment. The functional significance of this change in entrainment cues may be that while buried during the winter, the activity rhythm remains in phase with the day?:?night cycle by the substrate temperature cycles. During the summer, T. longicornis switches to the light?:?dark cycle for entrainment, perhaps as a mechanism to phase activity precisely to the short summer nights.  相似文献   
17.

Background

Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated.

Results

Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting.

Conclusion

We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has implications for targeted delivery of therapeutics and poorly soluble medicinal compounds via inhalation route.  相似文献   
18.
We hypothesized that zebrafish (Danio rerio) undergoing long-term vitamin E deficiency with marginal vitamin C status would develop myopathy resulting in impaired swimming. Zebrafish were fed for 1 y a defined diet without (E ?) and with (E +) vitamin E (500 mg α-tocopherol/kg diet). For the last 150 days, dietary ascorbic acid concentrations were decreased from 3500 to 50 mg/kg diet and the fish sampled periodically to assess ascorbic acid concentrations. The ascorbic acid depletion curves were faster in the E ? compared with E + fish (P < 0.0001); the estimated half-life of depletion in the E ? fish was 34 days, while in it was 55 days in the E + fish. To assess swimming behavior, zebrafish were monitored individually following a “startle-response” stimulus, using computer and video technology. Muscle histopathology was assessed using hematoxylin and eosin staining on paramedian sections of fixed zebrafish. At study end, E ? fish contained 300-fold less α-tocopherol (p < 0.0001), half the ascorbic acid (p = 0.0001) and 3-fold more malondialdehyde (p = 0.0005) than did E + fish. During the first minute following a tap stimulus (p < 0.05), E + fish swam twice as far as did E ? fish. In the E ? fish, the sluggish behavior was associated with a multifocal, polyphasic, degenerative myopathy of the skeletal muscle. The myopathy severity ranged from scattered acute necrosis to widespread fibrosis and was accompanied by increased anti-hydroxynonenal staining. Thus, vitamin E deficiency in zebrafish causes increased oxidative stress and a secondary depletion of ascorbic acid, resulting in severe damage to muscle tissue and impaired muscle function.  相似文献   
19.
Activation of the NFκB signaling pathway allows the cell to respond to infection and stress and can affect many cellular processes. As a consequence, NFκB activity must be integrated with a wide variety of parallel signaling pathways. One mechanism through which NFκB can exert widespread effects is through controlling the expression of key regulatory kinases. Here we report that NFκB regulates the expression of genes required for centrosome duplication, and that Polo-like kinase 4 (PLK4) is a direct NFκB target gene. RNA interference, chromatin immunoprecipitation, and analysis of the PLK4 promoter in a luciferase reporter assay revealed that all NFκB subunits participate in its regulation. Moreover, we demonstrate that NFκB regulation of PLK4 expression is seen in multiple cell types. Significantly long-term deletion of the NFκB2 (p100/p52) subunit leads to defects in centrosome structure. This data reveals a new component of cell cycle regulation by NFκB and suggests a mechanism through which deregulated NFκB activity in cancer can lead to increased genomic instability and uncontrolled proliferation.  相似文献   
20.
In dividing animal cells, the centrosome, comprising centrioles and surrounding pericentriolar-material (PCM), is the major interphase microtubule-organizing center (MTOC), arranging a polarized array of microtubules (MTs) that controls cellular architecture. The mouse embryo is a unique setting for investigating the role of centrosomes in MT organization, since the early embryo is acentrosomal, and centrosomes emerge de novo during early cleavages. Here we use embryos from a GFP::CETN2 transgenic mouse to observe the emergence of centrosomes and centrioles in embryos, and show that unfocused acentriolar centrosomes first form in morulae (~16–32-cell stage) and become focused at the blastocyst stage (~64–128 cells) concomitant with the emergence of centrioles. We then used high-resolution microscopy and dynamic tracking of MT growth events in live embryos to examine the impact of centrosome emergence upon interphase MT dynamics. We report that pre-implantation mouse embryos of all stages employ a non-canonical mode of MT organization that generates a complex array of randomly oriented MTs that are preferentially nucleated adjacent to nuclear and plasmalemmal membranes and cell-cell interfaces. Surprisingly, however, cells of the early embryo continue to employ this mode of interphase MT organization even after the emergence of centrosomes. Centrosomes are found at MT-sparse sites and have no detectable impact upon interphase MT dynamics. To our knowledge, the early embryo is unique among proliferating cells in adopting an acentrosomal mode of MT organization despite the presence of centrosomes, revealing that the transition to a canonical mode of interphase MT organization remains incomplete prior to implantation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号