首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1496篇
  免费   116篇
  国内免费   1篇
  2024年   1篇
  2023年   14篇
  2022年   28篇
  2021年   61篇
  2020年   42篇
  2019年   42篇
  2018年   29篇
  2017年   37篇
  2016年   65篇
  2015年   123篇
  2014年   103篇
  2013年   118篇
  2012年   182篇
  2011年   136篇
  2010年   94篇
  2009年   65篇
  2008年   85篇
  2007年   104篇
  2006年   73篇
  2005年   63篇
  2004年   43篇
  2003年   38篇
  2002年   22篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1981年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1959年   1篇
  1938年   1篇
  1935年   1篇
  1930年   1篇
排序方式: 共有1613条查询结果,搜索用时 62 毫秒
991.
When organisms release gametes into the sea, synchrony must be precise to increase fertilization and decrease hybridization. We tagged and genotyped over 400 spawning corals from the three species in the Montastraea annularis species complex. We report on the influence of species, individuals, and genotypes on timing of spawning from 2002 through 2009. During their annual spawning event M. franksi spawns on average 2 h after sunset, whereas M. annularis and M. faveolata spawn 3.5 h after sunset. Only M. franksi and M. annularis have compatible gametes. Individual colonies of the same genotype spawn at approximately the same time after sunset within and across years (within minutes), but different genotypes have significantly different spawning times. Neighboring colonies, regardless of genotype, spawn more synchronously than individuals spaced further apart. At a given distance, clone-mates spawn more synchronously than nonclone-mates. A transplant experiment indicates a genetic and environmental influence on spawn time. There is strong, but not absolute, concordance between spawn time, morphology, and genetics. Tight precision in spawning is achieved via a combination of external cues, genetic precision, and perhaps conspecific signaling. These mechanisms are likely to influence reproductive success and reproductive isolation in a density-dependent manner.  相似文献   
992.
The modification of N-glycans by α-mannosidases is a process that is relevant to a large number of biologically important processes, including infection by microbial pathogens and colonization by microbial symbionts. At present, the described mannosidases specific for α1,6-mannose linkages are very limited in number. Through structural and functional analysis of two sequence-related enzymes, one from Streptococcus pneumoniae (SpGH125) and one from Clostridium perfringens (CpGH125), a new glycoside hydrolase family, GH125, is identified and characterized. Analysis of SpGH125 and CpGH125 reveal them to have exo-α1,6-mannosidase activity consistent with specificity for N-linked glycans having their α1,3-mannose branches removed. The x-ray crystal structures of SpGH125 and CpGH125 obtained in apo-, inhibitor-bound, and substrate-bound forms provide both mechanistic and molecular insight into how these proteins, which adopt an (α/α)(6)-fold, recognize and hydrolyze the α1,6-mannosidic bond by an inverting, metal-independent catalytic mechanism. A phylogenetic analysis of GH125 proteins reveals this to be a relatively large and widespread family found frequently in bacterial pathogens, bacterial human gut symbionts, and a variety of fungi. Based on these studies we predict this family of enzymes will primarily comprise such exo-α1,6-mannosidases.  相似文献   
993.
Prion sorption to soil is thought to play an important role in the transmission of scrapie and chronic wasting disease (CWD) via the environment. Sorption of PrP to soil and soil minerals is influenced by the strain and species of PrP(Sc) and by soil characteristics. However, the ability of soil-bound prions to convert PrP(c) to PrP(Sc) under these wide-ranging conditions remains poorly understood. We developed a semiquantitative protein misfolding cyclic amplification (PMCA) protocol to evaluate replication efficiency of soil-bound prions. Binding of the hyper (HY) strain of transmissible mink encephalopathy (TME) (hamster) prions to a silty clay loam soil yielded a greater-than-1-log decrease in PMCA replication efficiency with a corresponding 1.3-log reduction in titer. The increased binding of PrP(Sc) to soil over time corresponded with a decrease in PMCA replication efficiency. The PMCA efficiency of bound prions varied with soil type, where prions bound to clay and organic surfaces exhibited significantly lower replication efficiencies while prions bound to sand exhibited no apparent difference in replication efficiency compared to unbound controls. PMCA results from hamster and CWD agent-infected elk prions yielded similar findings. Given that PrP(Sc) adsorption affinity varies with soil type, the overall balance between prion adsorption affinity and replication efficiency for the dominant soil types of an area may be a significant determinant in the environmental transmission of prion diseases.  相似文献   
994.
AimsLate phase ischemic preconditioning (LPC) protects the heart against ischemia–reperfusion (I/R) injury. However, its effect on myocardial tissue oxygenation and related mechanism(s) is unknown. The aim of the current study is to determine whether LPC attenuates post-ischemic myocardial tissue hyperoxygenation through preserving mitochondrial oxygen metabolism.Main methodsC57BL/6 mice were subjected to 30 min coronary ligation followed by 60 min or 24 h reperfusion with or without LPC (3 cycles of 5 min I/5 min R): Sham, LPC, I/R, and LPC + I/R group. Myocardial tissue Po2 and redox status were measured with electron paramagnetic resonance (EPR) spectroscopy.Key findingsUpon reperfusion, tissue Po2 rose significantly above the pre-ischemic level in the I/R mice (23.1 ± 2.2 vs. 12.6 ± 1.3 mm Hg, p < 0.01). This hyperoxygenation was attenuated by LPC in the LPC + I/R mice (11.9 ± 2.0 mm Hg, p < 0.01). Activities of NADH dehydrogenase (NADH-DH), succinate-cytochrome c reductase (SCR) and cytochrome c oxidase (CcO) were preserved or increased in the LPC group, significantly reduced in the I/R group, and conserved in the LPC + I/R group. Manganese superoxide dismutase (Mn-SOD) protein expression was increased by LPC in the LPC and LPC + I/R mice compared to that in the Sham control (1.24 ± 0.01 and 1.23 ± 0.01, p < 0.05). Tissue redox status was shifted to the oxidizing state with I/R (0.0268 ± 0.0016/min) and was corrected by LPC in the LPC + I/R mice (0.0379 ± 0.0023/min). Finally, LPC reduced the infarct size in the LPC + I/R mice (10.5 ± 0.4% vs. 33.3 ± 0.6%, p < 0.05).SignificanceThus, LPC preserved mitochondrial oxygen metabolism, attenuated post-ischemic myocardial tissue hyperoxygenation, and reduced I/R injury.  相似文献   
995.
996.
Human mesenchymal stem cells (MSCs) from bone marrow are a heterogeneous ensemble of progenitors and lineage-committed cells, with a broad range of regenerative properties. Ex vivo expansion to produce sufficient quantities of MSCs is essential for most therapeutic applications. The present study resolves the relationship between proliferation potential of MSCs and their potency. Clonal analysis generated single-cell derived colonies of MSCs that were classified according to their trilineage potential to exhibit adipo- (A), chondro- (C), and osteogenesis (O) as a measure of potency. Multipotent OAC clones were highly proliferative with colony-forming efficiencies that ranged from 35% to 90%; whereas, O clones formed colonies with an efficiency of 5% or less (P < 0.01). Similar trends were evident during ex vivo expansion: for example, the median specific growth rate was 0.8 day(-1) (20 h doubling time) for cultures inoculated with OAC clones and was 5-fold less for inocula of O clones (P < 0.01). OA and OC clones had similar proliferation potentials. More than 75% of cells in subconfluent cultures inoculated with O clones stained positive for senescence-associated β-galactosidase activity vs. less than 10% for OAC clones (P < 0.001). Apoptotic cells were in the minority for all potency groups. Preliminary data generated during clonal analysis suggest that osteogenic potential of MSCs to produce mineralized matrix is a function of potency, as well. These results are discussed in the context of the preparation of efficacious MSC therapies by ex vivo expansion.  相似文献   
997.
Spatial structure in a host population results in heterogeneity in transmission dynamics. We used a Bayesian framework to evaluate competing metapopulation models of rabies transmission among domestic dog populations in villages in Tanzania. A proximate indicator of disease, medical records of animal-bite injuries, is used to infer the occurrence (presence/absence) of suspected rabid dog cases in one month intervals. State-space models were used to explore the implications of different levels of reporting probability on model parameter estimates. We find evidence for a relatively high rate of infection of these populations from neighbouring districts or from other species distributed throughout the study area, rather than from adjacent wildlife protected areas, suggesting wildlife is unlikely to be implicated in the long-term persistence of rabies. Stochastic simulation of our highest ranked models in vaccinated and hypothetical unvaccinated populations indicated that pulsed vaccination campaigns occurring from 2002 to 2007 reduced rabies occurrence by 57.3 per cent in vaccinated villages in the 1 year following each pulse, and that a similar regional campaign would deliver an 80.9 per cent reduction in occurrence. This work demonstrates how a relatively coarse, proximate sentinel of rabies infection is useful for making inferences about spatial disease dynamics and the efficacy of control measures.  相似文献   
998.
Little is known about the dynamics of small mammals in tropical savanna: a critical gap in our understanding of Africa's best known ecosystems. Historical evidence suggested small mammals peak in abundance (outbreak) in Serengeti National Park (SNP), as in agricultural systems. We asked 1) what are bottom–up drivers of small mammals and 2) do predators have top–down effects? We documented dynamics of small mammals, birds of prey, and mammalian carnivores in SNP and agricultural areas. We used climatic fluctuations and differences between unmodified and agricultural systems as perturbations to examine trophic processes, key to understanding responses to climate change and increasing human pressures. Data were derived from intermittent measures of abundance collected 1968–1999, combined with systematic sampling 2000–2010 to construct a 42‐year time series. Data on abundance of black‐shouldered kites (1968–2010), eight other species of rodent‐eating birds (1997–2010), and 10 carnivore species (1993–2010) were also collated. Outbreaks occurred every 3–5 years in SNP, with low or zero abundance between peaks. There was a positive relationship between rainfall in the wet season and 1) small mammal abundance and 2) the probability of an outbreak, both of which increased with negative Southern Oscillation Index values. Rodent‐eating birds and carnivores peaked 6–12 months after small mammals. In agricultural areas, abundance remained higher than in natural habitats. Abundances of birds of prey and mammalian carnivores were extremely low in these areas and not related to small mammal abundance. Small mammals are an important food resource for higher trophic levels in the Serengeti ecosystem. Changes in climate and land use may alter their future dynamics, with cascading consequences for higher trophic levels, including threatened carnivores. Although outbreaks cause substantial damage to crops in agricultural areas, small mammals also play a vital role in maintaining some of the diversity and complexity found in African savanna ecosystems.  相似文献   
999.
Oxidants derived from myeloperoxidase (MPO) contribute to inflammatory diseases. In vivo MPO activity is commonly assessed by the accumulation of 3-chlorotyrosine (3-Cl-Tyr), although 3-Cl-Tyr is formed at low yield and is subject to metabolism. Here we show that MPO activity can be assessed using hydroethidine (HE), a probe commonly employed for the detection of superoxide. Using LC/MS/MS, 1H NMR, and two-dimensional NOESY, we identified 2-chloroethidium (2-Cl-E+) as a specific product when HE was exposed to hypochlorous acid (HOCl), chloramines, MPO/H2O2/chloride, and activated human neutrophils. The rate constant for HOCl-mediated conversion of HE to 2-Cl-E+ was estimated to be 1.5 × 105 m−1s−1. To investigate the utility of 2-Cl-E+ to assess MPO activity in vivo, HE was injected into wild-type and MPO-deficient (Mpo−/−) mice with established peritonitis or localized arterial inflammation, and tissue levels of 2-Cl-E+ and 3-Cl-Tyr were then determined by LC/MS/MS. In wild-type mice, 2-Cl-E+ and 3-Cl-Tyr were detected readily in the peritonitis model, whereas in the arterial inflammation model 2-Cl-E+ was present at comparatively lower concentrations (17 versus 0.3 pmol/mg of protein), and 3-Cl-Tyr could not be detected. Similar to the situation with 3-Cl-Tyr, tissue levels of 2-Cl-E+ were decreased substantially in Mpo−/− mice, indicative of the specificity of the assay. In the arterial inflammation model, 2-Cl-E+ was absent from non-inflamed arteries and blood, suggesting that HE oxidation occurred locally in the inflamed artery. Our data suggest that the conversion of exogenous HE to 2-Cl-E+ may be a useful selective and sensitive marker for MPO activity in addition to 3-Cl-Tyr.  相似文献   
1000.
Meiotic silencing by unpaired DNA (MSUD) is a process that detects unpaired regions between homologous chromosomes and silences them for the duration of sexual development. While the phenomenon of MSUD is well recognized, the process that detects unpaired DNA is poorly understood. In this report, we provide two lines of evidence linking unpaired DNA detection to a physical search for DNA homology. First, we have found that a putative SNF2-family protein (SAD-6) is required for efficient MSUD in Neurospora crassa. SAD-6 is closely related to Rad54, a protein known to facilitate key steps in the repair of double-strand breaks by homologous recombination. Second, we have successfully masked unpaired DNA by placing identical transgenes at slightly different locations on homologous chromosomes. This masking falls apart when the distance between the transgenes is increased. We propose a model where unpaired DNA detection during MSUD is achieved through a spatially constrained search for DNA homology. The identity of SAD-6 as a Rad54 paralog suggests that this process may be similar to the searching mechanism used during homologous recombination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号