首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   17篇
  2022年   5篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   10篇
  2015年   23篇
  2014年   14篇
  2013年   21篇
  2012年   32篇
  2011年   33篇
  2010年   26篇
  2009年   14篇
  2008年   32篇
  2007年   31篇
  2006年   27篇
  2005年   16篇
  2004年   15篇
  2003年   5篇
  2002年   16篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1989年   2篇
  1981年   1篇
排序方式: 共有364条查询结果,搜索用时 31 毫秒
81.
82.
Substituted N-alkyl-4-hydroxyquinolon-3-yl-benzothiadiazine sulfamides were investigated as inhibitors of genotype 1 HCV polymerase. Structure-activity relationship patterns for this class of compounds are discussed.  相似文献   
83.
The pharmacological profile of a new, safe, and effective hydrogen sulfide (H2S)-releasing derivative of aspirin (ACS14) is described. We report the synthesis of ACS14, and of its deacetylated metabolite (ACS21), the preliminary pharmacokinetics, and its in vivo metabolism, with the H2S plasma levels after intravenous administration in the rat. ACS14 maintains the thromboxane-suppressing activity of the parent compound, but seems to spare the gastric mucosa, by affecting redox imbalance through increased H2S/glutathione formation, heme oxygenase-1 promoter activity, and isoprostane suppression.  相似文献   
84.
Tight junctions (TJs) form physical barriers in various tissues and regulate paracellular transport of ions, water, and molecules. Myelinating Schwann cells form highly organized structures, including compact myelin, nodes of Ranvier, paranodal regions, Schmidt-Lanterman incisures, periaxonal cytoplasmic collars, and mesaxons. Autotypic TJs are formed in non-compacted myelin compartments between adjacent membrane lamellae of the same Schwann cell. Using indirect immunofluorescence and RT-PCR, we analyzed the expression of adherens junction (E-cadherin) and TJ [claudins, zonula occludens (ZO)-1, occludin] components in human peripheral nerve endoneurium, showing clear differences with published rodent profiles. Adult nerve paranodal regions contained E-cadherin, claudin-1, claudin-2, and ZO-1. Schmidt-Lanterman incisures contained E-cadherin, claudin-1, claudin-2, claudin-3, claudin-5, ZO-1, and occludin. Mesaxons contained E-cadherin, claudin-1, claudin-2, claudin-3, ZO-1, and occludin. None of the proteins studied were associated with nodal inter-Schwann cell junctions. Fetal nerve expression of claudin-1, claudin-3, ZO-1, and occludin was predominantly punctate, with a mesaxonal labeling pattern, but paranodal (ZO-1, claudin-3) and Schmidt-Lanterman incisure (claudins-1 and -3) expression profiles typical of compact myelin were visible by gestational week 37. The clear differences observed between human and published rodent nerve profiles emphasize the importance of human studies when translating the results of animal models to human diseases. (J Histochem Cytochem 57:523–529, 2009)  相似文献   
85.
Human leukocyte antigen (HLA) genes, located on chromosome 6p21.3, have a crucial role in susceptibility to various autoimmune and inflammatory diseases, such as celiac disease and type 1 diabetes. Certain HLA heterodimers, namely DQ2 (encoded by the DQA1*05 and DQB1*02 alleles) and DQ8 (DQA1*03 and DQB1*0302), are necessary for the development of celiac disease. Traditional genotyping of HLA genes is laborious, time-consuming, and expensive. A novel HLA-genotyping method, using six HLA-tagging single-nucleotide polymorphisms (SNPs) and suitable for high-throughput approaches, was described recently. Our aim was to validate this method in the Finnish, Hungarian, and Italian populations. The six previously reported HLA-tagging SNPs were genotyped in patients with celiac disease and in healthy individuals from Finland, Hungary, and two distinct regions of Italy. The potential of this method was evaluated in analyzing how well the tag SNP results correlate with the HLA genotypes previously determined using traditional HLA-typing methods. Using the tagging SNP method, it is possible to determine the celiac disease risk haplotypes accurately in Finnish, Hungarian, and Italian populations, with specificity and sensitivity ranging from 95% to 100%. In addition, it predicts homozygosity and heterozygosity for a risk haplotype, allowing studies on genotypic risk effects. The method is transferable between populations and therefore suited for large-scale research studies and screening of celiac disease among high-risk individuals or at the population level. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Lotta Koskinen and Jihane Romanos are authors with equal contribution.  相似文献   
86.

Background

Tumor-stroma reaction is associated with activation of fibroblasts. Nemosis is a novel type of fibroblast activation. It leads to an increased production of growth factors and proinflammatory and proteolytic proteins, while at the same time cytoskeletal proteins are degraded. Here we used paired normal skin fibroblasts and cancer-associated fibroblasts (CAF) and primary and recurrent oral squamous cell carcinoma (SCC) cells to study the nemosis response.

Principal Findings

Fibroblast nemosis was analyzed by protein and gene expression and the paracrine regulation with colony formation assay. One of the normal fibroblast strains, FB-43, upregulated COX-2 in nemosis, but FB-74 cells did not. In contrast, CAF-74 spheroids expressed COX-2 but CAF-43 cells did not. Alpha-SMA protein was expressed in both CAF strains and in FB-74 cells, but not in FB-43 fibroblasts. Its mRNA levels were downregulated in nemosis, but the CAFs started to regain the expression. FSP1 mRNA was downregulated in normal fibroblasts and CAF-74 cells, but not in CAF-43 fibroblasts. Serine protease FAP was upregulated in all fibroblasts, more so in nemotic CAFs. VEGF, HGF/SF and FGF7 mRNA levels were upregulated to variable degree in nemosis. CAFs increased the colony formation of primary tumor cell lines UT-SCC-43A and UT-SCC-74A, but normal fibroblasts inhibited the anchorage-independent growth of recurrent UT-SCC-43B and UT-SCC-74B cells.

Conclusions

Nemosis response, as observed by COX-2 and growth factor induction, and expression of CAF markers α-SMA, FSP1 and FAP, varies between fibroblast populations. The expression of CAF markers differs between normal fibroblasts and CAFs in nemosis. These results emphasize the heterogeneity of fibroblasts and the evolving tumor-promoting properties of CAFs.  相似文献   
87.
88.
89.
Extracellular ATP induces cation fluxes in and impairs the growth of murine erythroleukemia (MEL) cells in a manner characteristic of the purinergic P2X7 receptor, however the presence of P2X7 in these cells is unknown. This study investigated whether MEL cells express functional P2X7. RT-PCR, immunoblotting and immunofluorescence staining demonstrated the presence of P2X7 in MEL cells. Cytofluorometric measurements demonstrated that ATP induced ethidium+ uptake into MEL cells in a concentration-dependent fashion and with an EC50 of ∼ 154 μM. The most potent P2X7 agonist 2′- and 3′-0(4-benzoylbenzoyl) ATP, but not ADP or UTP, induced ethidium+ uptake. ATP-induced ethidium+ and YO-PRO-12+ uptake were impaired by the P2X7 antagonist, A-438079. A colourmetric assay demonstrated that ATP impaired MEL cell growth. A cytofluorometric assay showed that ATP induced MEL cell death and that this process was impaired by A-438079. Finally, cytofluorometric measurements of Annexin-V binding and bio-maleimide staining demonstrated that ATP could induce rapid phosphatidylserine exposure and microparticle release in MEL cells respectively, both of which were impaired by A-438079. These results demonstrate that MEL cells express functional P2X7, and indicate that activation of this receptor may be important in the death and release of microparticles from red blood cells in vivo.  相似文献   
90.
Syphacia obvelata is a rodent nematode parasite with high prevalence in laboratory mice. In our previous work we have demonstrated that this gut-dwelling helminth induces significant hematopoietic changes, characterized by increased myelopoiesis and erythropoiesis in infected animals, and accompanied with altered reactivity of bone marrow hematopoietic progenitors to interleukin (IL)-17. In this study we extended these investigations by demonstrating that naturally acquired S. obvelata infection induces significant alterations in murine bone marrow cells manifested at the molecular level. Namely, S. obvelata infection induced sustained phosphorylation of the members of three major groups of distinctly regulated mitogen-activated protein kinases (MAPKs), the p38, the c-Jun amino-terminal kinase (JNK) and the extracellular signal-regulated kinase (ERK), as well as enhanced expression of mRNA for the inducible nitric oxide synthase (iNOS) in the bone marrow cells of infected animals. Furthermore, the infection interfered with the IL-17-mediated effects in bone marrow cells, since in normal mice IL-17 significantly enhanced phosphorylation of p38 MAPK and upregulated the expression of iNOS and the constitutive, endothelial (e)NOS mRNA, while in S. obvelata-infected animals IL-17 did not influence the MAPKs activation, but markedly down-regulated the expression of both NOS isoforms. The data obtained demonstrating that S. obvelata is able to manipulate signal transduction pathways in the hosts' bone marrow cells, pointed to the multiple layers of immunomodulatory ability of this pinworm parasite and highlighted the importance of working under pinworm-free conditions when using experimental murine models for immunohematopoietic investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号