首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1458篇
  免费   124篇
  国内免费   1篇
  2023年   4篇
  2022年   10篇
  2021年   23篇
  2020年   12篇
  2019年   27篇
  2018年   23篇
  2017年   19篇
  2016年   38篇
  2015年   59篇
  2014年   66篇
  2013年   81篇
  2012年   116篇
  2011年   130篇
  2010年   61篇
  2009年   53篇
  2008年   94篇
  2007年   98篇
  2006年   90篇
  2005年   101篇
  2004年   83篇
  2003年   76篇
  2002年   81篇
  2001年   15篇
  2000年   12篇
  1999年   11篇
  1998年   23篇
  1997年   14篇
  1995年   11篇
  1994年   16篇
  1993年   15篇
  1992年   8篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   6篇
  1987年   16篇
  1986年   6篇
  1985年   7篇
  1984年   10篇
  1983年   5篇
  1982年   8篇
  1981年   8篇
  1980年   6篇
  1979年   2篇
  1978年   5篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   7篇
排序方式: 共有1583条查询结果,搜索用时 171 毫秒
41.
Replication by Escherichia coli DNA polymerase III is disrupted on encountering DNA damage. Consequently, specialized Y-family DNA polymerases are used to bypass DNA damage. The protein UmuD is extensively involved in modulating cellular responses to DNA damage and may play a role in DNA polymerase exchange for damage tolerance. In the absence of DNA, UmuD interacts with the α subunit of DNA polymerase III at two distinct binding sites, one of which is adjacent to the single-stranded DNA-binding site of α. Here, we use single molecule DNA stretching experiments to demonstrate that UmuD specifically inhibits binding of α to ssDNA. We predict using molecular modeling that UmuD residues D91 and G92 are involved in this interaction and demonstrate that mutation of these residues disrupts the interaction. Our results suggest that competition between UmuD and ssDNA for α binding is a new mechanism for polymerase exchange.  相似文献   
42.
Songbirds communicate by learned vocalizations with concomitant changes in neurophysiological and genomic activities in discrete parts of the brain. Here, we tested a novel implementation of diffusive optical imaging (also known as diffuse optical imaging, DOI) for monitoring brain physiology associated with vocal signal perception. DOI noninvasively measures brain activity using red and near-infrared light delivered through optic fibers (optodes) resting on the scalp. DOI does not harm subjects, so it raises the possibility of repeatedly measuring brain activity and the effects of accumulated experience in the same subject over an entire life span, all while leaving tissue intact for further study. We developed a custom-made apparatus for interfacing optodes to the zebra finch (Taeniopygia guttata) head using 3D modeling software and rapid prototyping technology, and applied it to record responses to presentations of birdsong in isoflurane-anesthetized zebra finches. We discovered a subtle but significant difference between the hemoglobin spectra of zebra finches and mammals which has a major impact in how hemodynamic responses are interpreted in the zebra finch. Our measured responses to birdsong playback were robust, highly repeatable, and readily observed in single trials. Responses were complex in shape and closely paralleled responses described in mammals. They were localized to the caudal medial portion of the brain, consistent with response localization from prior gene expression, electrophysiological, and functional magnetic resonance imaging studies. These results define an approach for collecting neurophysiological data from songbirds that should be applicable to diverse species and adaptable for studies in awake behaving animals.  相似文献   
43.

Aims

Because the water status of grapevines strongly affects the quality of the grapes and resulting wine, automated and early drought stress detection is important. Plant measurements are very promising for detecting drought stress, but strongly depend on microclimatic changes. Therefore, conventional stress detection methods require threshold values which define when plants start sensing drought stress. There is however no unique method to define these values. In this study, we propose two techniques that overcome this limitation.

Methods

Two statistical methods were used to automatically distinguish between drought and microclimate effects, based on a short preceding full-irrigated period to extract plant behaviour under normal conditions: Unfold Principal Component Analysis (UPCA) and Functional Unfold Principal Component Analysis (FUPCA). Both techniques aimed at detecting when measured sap flow rate or stem diameter variations in grapevine deviated from their normal behaviour due to drought stress.

Results

The models based on sap flow rate had some difficulties to detect stress on days with low atmospheric demands, while those based on stem diameter variations did not show this limitation, but ceased detecting stress when the stem diameter levelled off after a period of severe shrinkage. Nevertheless, stress was successfully detected with both approaches days before visible symptoms appeared.

Conclusions

UPCA and FUPCA based on plant indicators are therefore very promising for early stress detection.  相似文献   
44.
45.
The importance of interplant volatile signaling in plant–herbivore interactions has been a contentious issue for the past 30 years. We revisit willows as the system in which evidence for interplant signaling was originally found, but then questioned. We established three well-replicated experiments with two willow species (Salix exigua and Salix lemmonii) to address whether the receipt of an interplant signal from a neighboring willow reduces herbivore damage. Additionally we tested whether this signal is volatile in nature, and whether plants signal better to themselves than they do to other individuals. In all three experiments, we found evidence that cues from a damaged neighbor reduce subsequent herbivory experienced by willows. In one experiment, we showed that bagging of clipped tissue, which prevents the exchange of volatile signals, removed the effect of neighbor wounding. This was consistent with results from the other two experiments, in which clipping potted neighbors connected only through airborne volatile cues reduced damage of receivers. In one year, we found evidence that the perception of volatile signals from genetically identical clones was more effective at reducing foliar damage to a neighbor than signals from a genetically different individual. However, this trend was not significant in the following year. In three well-replicated experiments, we found strong evidence for the importance of interplant volatile cues in mediating herbivore interactions with willows.  相似文献   
46.
Capsule The incidence of sheep ticks on moorland wader chicks varied widely between species, however no effect on chick body condition was detected in relation to tick burden.  相似文献   
47.
Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.).  相似文献   
48.
Upland birds are predicted to be particularly vulnerable to the effects of climate change, yet few studies have examined these effects on their breeding phenology and productivity. Laying dates of Red Grouse Lagopus lagopus scotica in the Scottish Highlands advanced by 0.5 days/year between 1992 and 2011 and were inversely correlated with pre‐laying temperature, with a near‐significant increase in temperature over this period. Earlier clutches were larger and chick survival was greater in earlier nesting attempts. However, chick survival was also higher in years with lower May temperatures and lower August temperatures in the previous year, the latter probably related to prey abundance in the subsequent breeding season. Although laying dates are advancing, climate change does not currently appear to be having an overall effect on chick survival of Red Grouse within the climate range recorded in this study.  相似文献   
49.
Hookworms of the genus Uncinaria have been widely reported from juvenile pinnipeds, however investigations of their systematics has been limited, with only two species described, Uncinaria lucasi from northern fur seals (Callorhinus ursinus) and Uncinaria hamiltoni from South American sea lions (Otaria flavescens). Hookworms were sampled from these hosts and seven additional species including Steller sea lions (Eumetopias jubatus), California sea lions (Zalophus californianus), South American fur seals (Arctocephalus australis), Australian fur seals (Arctocephalus pusillus), New Zealand sea lions (Phocarctos hookeri), southern elephant seals (Mirounga leonina), and the Mediterranean monk seal (Monachus monachus). One hundred and thirteen individual hookworms, including an outgroup species, were sequenced for four genes representing two loci (nuclear ribosomal DNA and mitochondrial DNA). Phylogenetic analyses of these sequences recovered seven independent evolutionary lineages or species, including the described species and five undescribed species. The molecular evidence shows that U. lucasi parasitises both C. ursinus and E. jubatus, whereas U. hamiltoni parasitises O. flavescens and A. australis. The five undescribed hookworm species were each associated with single host species (Z. californianus, A. pusillus, P. hookeri, M. leonina and M. monachus). For parasites of otarids, patterns of Uncinaria host-sharing and phylogenetic relationships had a strong biogeographic component with separate clades of parasites from northern versus southern hemisphere hosts. Comparison of phylogenies for these hookworms and their hosts suggests that the association of U. lucasi with northern fur seals results from a host-switch from Steller sea lions. Morphometric data for U. lucasi shows marked host-associated size differences for both sexes, with U. lucasi individuals from E. jubatus significantly larger. This result suggests that adult growth of U. lucasi is reduced within the host species representing the more recent host–parasite association. Intraspecific host-induced size differences are inconsistent with the exclusive use of morphometrics to delimit and diagnose species of Uncinaria from pinnipeds.  相似文献   
50.
Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro‐economic monocot species. Here we show that products and signals derived from a single Zea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbivory. We provide genetic evidence that two 13‐LOXs, ZmLOX10 and ZmLOX8, specialize in providing substrate for the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the specialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indicating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression of JA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10‐derived signaling is required for LOX8‐mediated JA. The possible role of GLVs in JA signaling is supported by their ability to partially restore wound‐induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produce GLVs and JA led to dramatic reductions in herbivore‐induced plant volatiles (HIPVs) and attractiveness to parasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic link to the diurnal regulation of GLVs and HIPVs. GLV‐, JA‐ and HIPV‐deficient lox10 mutants display compromised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence that LOX10‐dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene to agro‐ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号