首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4276篇
  免费   468篇
  国内免费   1篇
  2023年   22篇
  2022年   43篇
  2021年   125篇
  2020年   65篇
  2019年   79篇
  2018年   95篇
  2017年   82篇
  2016年   138篇
  2015年   222篇
  2014年   226篇
  2013年   279篇
  2012年   363篇
  2011年   358篇
  2010年   217篇
  2009年   191篇
  2008年   284篇
  2007年   302篇
  2006年   274篇
  2005年   234篇
  2004年   214篇
  2003年   209篇
  2002年   193篇
  2001年   38篇
  2000年   24篇
  1999年   36篇
  1998年   53篇
  1997年   33篇
  1996年   26篇
  1995年   26篇
  1994年   25篇
  1993年   16篇
  1992年   16篇
  1991年   19篇
  1990年   11篇
  1989年   18篇
  1988年   19篇
  1987年   12篇
  1986年   12篇
  1985年   13篇
  1984年   11篇
  1983年   12篇
  1982年   11篇
  1981年   10篇
  1980年   14篇
  1979年   8篇
  1978年   10篇
  1977年   7篇
  1976年   6篇
  1973年   8篇
  1971年   6篇
排序方式: 共有4745条查询结果,搜索用时 15 毫秒
161.
162.
This synthesis builds on the preceding articles of this Special Section and has three goals. We first review the nascent literature that addresses indirect effects of hunting for tropical forest plant communities. Next, we highlight the potential indirect effects of hunting for other groups of organisms. Our final goal is to consider what could be done to ameliorate the demographic threats to harvest-sensitive game species caused by unsustainable hunting. Three conclusions are possible at this time concerning the impact of hunting for tropical forest plant communities: (1) Hunting tends to reduce seed movement for animal-dispersed species with very large diaspores; (2) Hunting reduces seed predation by granivorous vertebrates for species with large seeds; and (3) Hunting alters the species composition of the seedling and sapling layers. The cascading effects of hunting are already known to affect bruchid beetles and dung beetles and are likely to affect other, nongame taxa. To ameliorate these problems, several lines of research should be further explored to facilitate the development of game management plans including: (1) alternative use of sources of animal protein; (2) income supplementation for local people from sources other than wild meat; (3) outreach and extension activities for communities; (4) recognition and facilitation of the shifting of attitudes towards hunting; (5) implementation of community-based wildlife management programs in regulated-use areas such as extractive reserves; and (6) landscape-scale conservation planning that maximizes the source-sink dynamics of harvested and unharvested game populations and enforces game regulations in strictly protected areas.  相似文献   
163.
We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size.  相似文献   
164.
Cdc42 signaling pathways play important roles in immune cell polarization and cytoskeletal changes. Although the small Cdc42-binding proteins SPEC1 and SPEC2 play a role in F-actin accumulation in activated T lymphocytes, little is known about their precise activities in other cell types. Here, we mapped the Cdc42-binding activity of SPEC1 to the CRIB sequence and a downstream alpha helical region. Biochemical studies revealed that SPEC1 did not interact with a Rac1 switch-of-function mutant capable of inducing Cdc42-like filopodia, potentially eliminating a role for SPECs in this process. A phosphoinositide-binding region was identified within a basic region N-terminal to the CRIB sequence of SPEC1. Using an anti-SPEC2 antibody, we found that endogenous SPEC2 colocalized with Cdc42 at the phagocytic cup of macrophages internalizing zymosan A particles prior to significant F-actin accumulation. Overexpression studies of the related SPEC1 protein induced marked macrophage contraction and prevented particle binding and phagocytosis. Although a Cdc42-binding mutant of SPEC1 still caused macrophage contraction, mutations within the N-terminal cysteines and phosphoinositide-binding region reversed macrophage contraction but still resulted in impaired phagocytosis. These results identify three distinct structural and functional regions within SPECs and demonstrate their likely role in early contractile events in phagocytosis.  相似文献   
165.
Microvilli are found on the surface of many cell types, including the mammalian oocyte, where they are thought to act in initial contact of sperm and oocyte plasma membranes. CD9 is currently the only oocyte protein known to be required for sperm-oocyte fusion. We found CD9 is localized to the oocyte microvillar membrane using transmission electron microscopy (TEM). Scanning electron microscopy (SEM) showed that CD9 null oocytes, which are unable to fuse with sperm, have an altered length, thickness and density of their microvilli. One aspect of this change in morphology was quantified using TEM by measuring the radius of curvature at the microvillar tips. A small radius of curvature is thought to promote fusibility and the radius of curvature of microvillar tips on CD9 wild-type oocytes was found to be half that of the CD9 null oocytes. We found that oocyte CD9 co-immunoprecipitates with two Ig superfamily cis partners, EWI-2 and EWI-F, which could have a role in linking CD9 to the oocyte microvillar actin core. We also examined latrunculin B-treated oocytes, which are known to have reduced fusion ability, and found altered microvillar morphology by SEM and TEM. Our data suggest that microvilli may participate in sperm-oocyte fusion. Microvilli could act as a platform to concentrate adhesion/fusion proteins and/or provide a membrane protrusion with a low radius of curvature. They may also have a dynamic interaction with the sperm that serves to capture the sperm cell and bring it into close contact with the oocyte plasma membrane.  相似文献   
166.
Mutations in the zebrafish connexin43 (cx43) gene cause the short fin phenotype, indicating that direct cell-cell communication contributes to bone length. Three independently generated cx43 alleles exhibit short segments of variable sizes, suggesting that gap junctional intercellular communication may regulate bone growth. Dye coupling assays showed that all alleles are capable of forming gap junction channels. However, ionic coupling assays revealed allele-specific differences in coupling efficiency and gating. For instance, oocyte pairs expressing the weakest allele exhibited much higher levels of coupling than either of the strong alleles. Therefore, measurable differences in Cx43 function may be correlated with the severity of defects in bone length.  相似文献   
167.
The pattern recognition receptor CD36 initiates a signaling cascade that promotes microglial activation and recruitment to beta-amyloid deposits in the brain. In the present study we identify the focal adhesion-associated proteins p130Cas, Pyk2, and paxillin as novel members of the tyrosine kinase signaling pathway downstream of CD36 and show that assembly of this complex is essential for microglial migration. In primary microglia and macrophages exposed to beta-amyloid, the scaffolding protein p130Cas is rapidly tyrosine-phosphorylated and co-localizes with CD36 to membrane ruffles contemporaneous with F-actin polymerization. These beta-amyloid-stimulated events are not detected in CD36 null cells and are dependent on CD36 activation of Src family tyrosine kinases. Fyn, a Src kinase known to interact with CD36, co-precipitates with p130Cas and is an essential upstream intermediate in the signaling pathways leading to phosphorylation of the p130Cas substrate domain. Furthermore, the p130Cas-interacting kinase Pyk2 and the cytoskeletal adapter protein paxillin also demonstrate CD36-dependent phosphorylation, identifying these focal adhesion molecules as additional members of this beta-amyloid signaling cascade. Disruption of this p130Cas complex by small interfering RNA silencing inhibits p44/42 mitogen-activated protein kinase phosphorylation and microglial migration, illustrating the importance of this pathway in microglial activation and recruitment. Together, these data are the first to identify the signaling cascade that directly links CD36 to the actin cytoskeleton and, thus, implicates it in diverse processes such as cellular migration, adhesion, and phagocytosis.  相似文献   
168.
Alpha-synuclein (AS) is an intrinsically unstructured protein in aqueous solution but is capable of forming beta-sheet-rich fibrils that accumulate as intracytoplasmic inclusions in Parkinson disease and certain other neurological disorders. However, AS binding to phospholipid membranes leads to a distinct change in protein conformation, stabilizing an extended amphipathic alpha-helical domain reminiscent of the exchangeable apolipoproteins. To better understand the significance of this conformational change, we devised a novel bacteriophage display screen to identify protein binding partners of helical AS and have identified 20 proteins with roles in diverse cellular processes related to membrane trafficking, ion channel modulation, redox metabolism, and gene regulation. To verify that the screen identifies proteins with specificity for helical AS, we further characterized one of these candidates, endosulfine alpha (ENSA), a small cAMP-regulated phosphoprotein implicated in the regulation of insulin secretion but also expressed abundantly in the brain. We used solution NMR to probe the interaction between ENSA and AS on the surface of SDS micelles. Chemical shift perturbation mapping experiments indicate that ENSA interacts specifically with residues in the N-terminal helical domain of AS in the presence of SDS but not in aqueous buffer lacking SDS. The ENSA-related protein ARPP-19 (cAMP-regulated phosphoprotein 19) also displays specific interactions with helical AS. These results confirm that the helical N terminus of AS can mediate specific interactions with other proteins and suggest that membrane binding may regulate the physiological activity of AS in vivo.  相似文献   
169.
Human mitochondrial glutaredoxin 2 (GLRX2), which controls intracellular redox balance and apoptosis, exists in a dynamic equilibrium of enzymatically active monomers and quiescent dimers. Crystal structures of both monomeric and dimeric forms of human GLRX2 reveal a distinct glutathione binding mode and show a 2Fe-2S-bridged dimer. The iron-sulfur cluster is coordinated through the N-terminal active site cysteine, Cys-37, and reduced glutathione. The structures indicate that the enzyme can be inhibited by a high GSH/GSSG ratio either by forming a 2Fe-2S-bridged dimer that locks away the N-terminal active site cysteine or by binding non-covalently and blocking the active site as seen in the monomer. The properties that permit GLRX2, and not other glutaredoxins, to form an iron-sulfur-containing dimer are likely due to the proline-to-serine substitution in the active site motif, allowing the main chain more flexibility in this area and providing polar interaction with the stabilizing glutathione. This appears to be a novel use of an iron-sulfur cluster in which binding of the cluster inactivates the protein by sequestering active site residues and where loss of the cluster through changes in subcellular redox status creates a catalytically active protein. Under oxidizing conditions, the dimers would readily separate into iron-free active monomers, providing a structural explanation for glutaredoxin activation under oxidative stress.  相似文献   
170.
The first committed step in the biosynthesis of L-ascorbate from D-glucose in plants requires conversion of GDP-L-galactose to L-galactose 1-phosphate by a previously unidentified enzyme. Here we show that the protein encoded by VTC2, a gene mutated in vitamin C-deficient Arabidopsis thaliana strains, is a member of the GalT/Apa1 branch of the histidine triad protein superfamily that catalyzes the conversion of GDP-L-galactose to L-galactose 1-phosphate in a reaction that consumes inorganic phosphate and produces GDP. In characterizing recombinant VTC2 from A. thaliana as a specific GDP-L-galactose/GDP-D-glucose phosphorylase, we conclude that enzymes catalyzing each of the ten steps of the Smirnoff-Wheeler pathway from glucose to ascorbate have been identified. Finally, we identify VTC2 homologs in plants, invertebrates, and vertebrates, suggesting that a similar reaction is used widely in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号