首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1446篇
  免费   111篇
  国内免费   2篇
  2024年   1篇
  2023年   6篇
  2022年   21篇
  2021年   42篇
  2020年   25篇
  2019年   23篇
  2018年   38篇
  2017年   27篇
  2016年   51篇
  2015年   106篇
  2014年   96篇
  2013年   107篇
  2012年   182篇
  2011年   140篇
  2010年   88篇
  2009年   58篇
  2008年   98篇
  2007年   88篇
  2006年   77篇
  2005年   59篇
  2004年   61篇
  2003年   54篇
  2002年   38篇
  2001年   2篇
  2000年   5篇
  1999年   7篇
  1998年   8篇
  1997年   6篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   4篇
  1991年   3篇
  1989年   1篇
  1988年   2篇
  1986年   5篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有1559条查询结果,搜索用时 15 毫秒
111.
Glucosylceramides (GlcCer), glucose‐conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryotic cells. Yet the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi‐organ eukaryotes. To address this, we examined Arabidopsis lines that were lacking or deficient in GlcCer by insertional disruption or by RNA interference (RNAi) suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated ‘gcs‐1’) were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs‐1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild‐type plants. However, gcs‐1 calli, in contrast to wild‐type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ‐specific cell differentiation, calli from gcs‐1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs‐1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild‐type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild‐type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell‐type differentiation and organogenesis, and plant cells produce amounts of GlcCer in excess of that required for normal development.  相似文献   
112.
Animal communication is an intriguing topic in evolutionary biology. In this comprehensive study of visual signal evolution, we used a phylogenetic approach to study the evolution of the flash communication system of North American fireflies. The North American firefly genus Photinus contains 35 described species with simple ON–OFF visual signals, and information on habitat types, sympatric congeners, and predators. This makes them an ideal study system to test hypotheses on the evolution of male and female visual signal traits. Our analysis of 34 Photinus species suggests two temporal pattern generators: one for flash duration and one for flash intervals. Reproductive character displacement was a main factor for signal divergence in male flash duration among sympatric Photinus species. Male flash pattern intervals (i.e., the duration of the dark periods between signals) were positively correlated with the number of sympatric Photuris fireflies, which include predators of Photinus. Females of different Photinus species differ in their response preferences to male traits. As in other communication systems, firefly male sexual signals seem to be a compromise between optimizing mating success (sexual selection) and minimizing predation risk (natural selection). An integrative model for Photinus signal evolution is proposed.  相似文献   
113.
MHC class I-restricted epitopes, which carry a tumor-specific mutation resulting in improved MHC binding affinity, are preferred T cell receptor targets in innovative adoptive T cell therapies. However, T cell therapy requires efficient generation of the selected epitope. How such mutations may affect proteasome-mediated antigen processing has so far not been studied. Therefore, we analyzed by in vitro experiments the effect on antigen processing and recognition of a T210M exchange, which previously had been introduced into the melanoma gp100209–217tumor epitope to improve the HLA-A*02:01 binding and its immunogenicity. A quantitative analysis of the main steps of antigen processing shows that the T210M exchange affects proteasomal cleavage site usage within the mutgp100201–230 polypeptide, leading to the generation of an unique set of cleavage products. The T210M substitution qualitatively affects the proteasome-catalyzed generation of spliced and non-spliced peptides predicted to bind HLA-A or -B complexes. The T210M substitution also induces an enhanced production of the mutgp100209–217 epitope and its N-terminally extended peptides. The T210M exchange revealed no effect on ERAP1-mediated N-terminal trimming of the precursor peptides. However, mutant N-terminally extended peptides exhibited significantly increased HLA-A*02:01 binding affinity and elicited CD8+ T cell stimulation in vitro similar to the wtgp100209–217 epitope. Thus, our experiments demonstrate that amino acid exchanges within an epitope can result in the generation of an altered peptide pool with new antigenic peptides and in a wider CD8+ T cell response also towards N-terminally extended versions of the minimal epitope.  相似文献   
114.
The cyclic dimeric AMP nucleotide c-di-AMP is an essential second messenger in Bacillus subtilis. We have identified the protein DarA as one of the prominent c-di-AMP receptors in B. subtilis. Crystal structure analysis shows that DarA is highly homologous to PII signal transducer proteins. In contrast to PII proteins, the functionally important B- and T-loops are swapped with respect to their size. DarA is a homotrimer that binds three molecules of c-di-AMP, each in a pocket located between two subunits. We demonstrate that DarA is capable to bind c-di-AMP and with lower affinity cyclic GMP-AMP (3′3′-cGAMP) but not c-di-GMP or 2′3′-cGAMP. Consistently the crystal structure shows that within the ligand-binding pocket only one adenine is highly specifically recognized, whereas the pocket for the other adenine appears to be promiscuous. Comparison with a homologous ligand-free DarA structure reveals that c-di-AMP binding is accompanied by conformational changes of both the fold and the position of the B-loop in DarA.  相似文献   
115.
116.
117.
118.
Antibodies to the autoantigen transglutaminase 2 (TG2) are a hallmark of celiac disease. We have studied the interaction between TG2 and an anti-TG2 antibody (679-14-E06) derived from a single gut IgA plasma cell of a celiac disease patient. The antibody recognizes one of four identified epitopes targeted by antibodies of plasma cells of the disease lesion. The binding interface was identified by small angle x-ray scattering, ab initio and rigid body modeling using the known crystal structure of TG2 and the crystal structure of the antibody Fab fragment, which was solved at 2.4 Å resolution. The result was confirmed by testing binding of the antibody to TG2 mutants by ELISA and surface plasmon resonance. TG2 residues Arg-116 and His-134 were identified to be critical for binding of 679-14-E06 as well as other epitope 1 antibodies. In contrast, antibodies directed toward the two other main epitopes (epitopes 2 and 3) were not affected by these mutations. Molecular dynamics simulations suggest interactions of 679-14-E06 with the N-terminal domain of TG2 via the CDR2 and CDR3 loops of the heavy chain and the CDR2 loop of the light chain. In addition there were contacts of the framework 3 region of the heavy chain with the catalytic domain of TG2. The results provide an explanation for the biased usage of certain heavy and light chain gene segments by epitope 1-specific antibodies in celiac disease.  相似文献   
119.
Elevated levels of p130Cas (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1 gene) are associated with aggressiveness of breast tumors. Following phosphorylation of its substrate domain, p130Cas promotes the integration of protein complexes involved in multiple signaling pathways and mediates cell proliferation, adhesion, and migration. In addition to the known BCAR1-1A (wild-type) and 1C variants, we identified four novel BCAR1 mRNA variants, generated by alternative first exon usage (1B, 1B1, 1D, and 1E). Exons 1A and 1C encode for four amino acids (aa), whereas 1D and 1E encode for 22 aa and 1B1 encodes for 50 aa. Exon 1B is non-coding, resulting in a truncated p130Cas protein (Cas1B). BCAR1-1A, 1B1, and variant 1C mRNAs were ubiquitously expressed in cell lines and a survey of human tissues, whereas 1B, 1D, and 1E expression was more restricted. Reconstitution of all isoforms except for 1B in p130Cas-deficient murine fibroblasts induced lamellipodia formation and membrane ruffling, which was unrelated to the substrate domain phosphorylation status. The longer isoforms exhibited increased binding to focal adhesion kinase (FAK), a molecule important for migration and adhesion. The shorter 1B isoform exhibited diminished FAK binding activity and significantly reduced migration and invasion. In contrast, the longest variant 1B1 established the most efficient FAK binding and greatly enhanced migration. Our results indicate that the p130Cas exon 1 variants display altered functional properties. The truncated variant 1B and the longer isoform 1B1 may contribute to the diverse effects of p130Cas on cell biology and therefore will be the target of future studies.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号