首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2024篇
  免费   180篇
  国内免费   2篇
  2023年   8篇
  2022年   25篇
  2021年   47篇
  2020年   27篇
  2019年   25篇
  2018年   45篇
  2017年   41篇
  2016年   65篇
  2015年   118篇
  2014年   106篇
  2013年   138篇
  2012年   222篇
  2011年   170篇
  2010年   108篇
  2009年   74篇
  2008年   121篇
  2007年   109篇
  2006年   90篇
  2005年   81篇
  2004年   80篇
  2003年   75篇
  2002年   58篇
  2001年   22篇
  2000年   26篇
  1999年   24篇
  1998年   17篇
  1997年   9篇
  1996年   9篇
  1995年   12篇
  1994年   10篇
  1993年   16篇
  1992年   22篇
  1991年   13篇
  1990年   9篇
  1989年   13篇
  1988年   17篇
  1987年   12篇
  1986年   13篇
  1985年   9篇
  1984年   10篇
  1983年   8篇
  1981年   11篇
  1980年   6篇
  1977年   6篇
  1975年   6篇
  1974年   6篇
  1972年   6篇
  1970年   10篇
  1969年   8篇
  1967年   6篇
排序方式: 共有2206条查询结果,搜索用时 15 毫秒
101.
102.
103.
104.
Modifications of histone cores and tails in V(D)J recombination   总被引:1,自引:0,他引:1  
The organization of chromatin and modifications to the tails of histone proteins are thought to be important in regulating the rearrangement of V, D and J gene segments, which encode immunoglobulins and T-cell receptors. A recent study shows that methylated lysine 79 in the core region of histone H3 also plays a role by providing a euchromatic 'mark' that may regulate access of the V(D)J recombinase.  相似文献   
105.
The Ras GTPases are a superfamily of molecular switches that regulate cellular proliferation and apoptosis in response to extra-cellular signals. The regulation of these pathways depends on the interaction of the GTPases with specific effectors. Recently, we have cloned and characterized a novel gene encoding a putative Ras effector: the Ras-association domain family 1 (RASSF1) gene. The RASSF1 gene is located in the chromosomal segment of 3p21.3. The high allelic loss in a variety of cancers suggested a crucial role of this region in tumorigenesis. At least two forms of RASSF1 are present in normal human cells. The RASSF1A isoform is highly epigenetically inactivated in lung, breast, ovarian, kidney, prostate, thyroid and several other carcinomas. Re-expression of RASSF1A reduced the growth of human cancer cells supporting a role for RASSF1 as a tumor suppressor gene. RASSF1A inactivation and K-ras activation are mutually exclusive events in the development of certain carcinomas. This observation could further pinpoint the function of RASSF1A as a negative effector of Ras in a pro-apoptotic signaling pathway. In malignant mesothelioma and gastric cancer RASSF1A methylation is associated with virus infection of SV40 and EBV, respectively, and suggests a causal relationship between viral infection and progressive RASSF1A methylation in carcinogenesis. Furthermore, a significant correlation between RASSF1A methylation and impaired lung cancer patient survival was reported, and RASSF1A silencing was correlated with several parameters of poor prognosis and advanced tumor stage (e.g. poor differentiation, aggressiveness, and invasion). Thus, RASSF1A methylation could serve as a useful marker for the prognosis of cancer patients and could become important in early detection of cancer.  相似文献   
106.
107.
108.
Nitric oxide (NO)-mediated smooth muscle relaxation is mediated by cGMP through activation of cGMP-dependent protein kinase I (cGKI). We studied the importance of cGKI for lower urinary tract function in mice lacking the gene for cGKI (cGKI-/-) and in litter-matched wild-type mice (cGKI+/+) in vitro and in vivo. cGKI deficiency did not result in any changes in bladder gross morphology or weight. Urethral strips from cGKI-/- mice showed an impaired relaxant response to nerve-derived NO. The cGMP analog 8-bromo-cGMP (8-BrcGMP) and the NO-donor SIN-1 relaxed the wild-type urethra (50-60%) but had only marginal effects in the cGKI-deficient urethra. Bladder strips from cGKI-/- mice responded normally to electrical field stimulation and to carbachol but not to 8-BrcGMP. In vivo, the cGKI-deficient mice showed bladder hyperactivity characterized by decreased intercontraction intervals and nonvoiding bladder contractions. Loss of cGKI abolishes NO-cGMP-dependent relaxations of urethral smooth muscle and results in hyperactive voiding. These data suggest that certain voiding disturbances may be associated with impaired NO-cGKI signaling.  相似文献   
109.
In skeletal muscle the oligomeric alpha(1S), alpha(2)/delta-1 or alpha(2)/delta-2, beta1, and gamma1 L-type Ca(2+) channel or dihydropyridine receptor functions as a voltage sensor for excitation contraction coupling and is responsible for the L-type Ca(2+) current. The gamma1 subunit, which is tightly associated with this Ca(2+) channel, is a membrane-spanning protein exclusively expressed in skeletal muscle. Previously, heterologous expression studies revealed that gamma1 might modulate Ca(2+) currents expressed by the pore subunit found in heart, alpha(1C), shifting steady state inactivation, and increasing current amplitude. To determine the role of gamma1 assembled with the skeletal subunit composition in vivo, we used gene targeting to establish a mouse model, in which gamma1 expression is eliminated. Comparing litter-matched mice with control mice, we found that, in contrast to heterologous expression studies, the loss of gamma1 significantly increased the amplitude of peak dihydropyridine-sensitive I(Ca) in isolated myotubes. Whereas the activation kinetics of the current remained unchanged, inactivation of the current was slowed in gamma1-deficient myotubes and, correspondingly, steady state inactivation of I(Ca) was shifted to more positive membrane potentials. These results indicate that gamma1 decreases the amount of Ca(2+) entry during stimulation of skeletal muscle.  相似文献   
110.
Thiabendazole (TBZ), an anthelmintic and fungicide benzimidazole, was recently demonstrated to be extensively metabolized by cytochrome P450 (CYP) 1A2 in man and rabbit, yielding 5-hydroxythiabendazole (5OH-TBZ), the major metabolite furtherly conjugated, and two minor unidentified metabolites (M1 and M2). In this study, exposure of rabbit and human cells to 14C-TBZ was also shown to be associated with the appearance of radioactivity irreversibly bound to proteins. The nature of CYP isoforms involved in this covalent binding was investigated by using cultured rabbit hepatocytes treated or not with various CYP inducers (CYP1A1/2 by beta-naphthoflavone, CYP2B4 by phenobarbital, CYP3A6 by rifampicine, CYP4A by clofibrate) and human liver and bronchial CYP-expressing cells. The covalent binding to proteins was particularly increased in beta-naphthoflavone-treated rabbit cells (2- to 4-fold over control) and human cells expressing CYP1A2 (22- to 42-fold over control). Thus, CYP1A2 is a major isoenzyme involved in the formation of TBZ-derived residues bound to protein. Furthermore, according to the good correlation between covalent binding and M1 or 5OH-TBZ production, TBZ would be firstly metabolized to 5OH-TBZ and subsequently converted to a chemically reactive metabolic intermediate binding to proteins. This metabolic activation could take place preferentially in liver and lung, the main biotransformation organs, rather than in intestines where TBZ was shown to be not metabolized. Moreover, TBZ was rapidly transported by passive diffusion through the human intestinal cells by comparison with the protein-bound residues which were not able to cross the intestinal barrier. Consequently, the absence of toxicity measured in intestines could be related to the low degree of TBZ metabolism and the lack of absorption of protein adducts. Nevertheless, caution is necessary in the use of TBZ concurrently with other drugs able to regulate CYP1A2, particularly in respect to liver and lung tissues, recognised as sites of covalent-binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号