首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1445篇
  免费   111篇
  国内免费   2篇
  2024年   1篇
  2023年   6篇
  2022年   17篇
  2021年   42篇
  2020年   26篇
  2019年   23篇
  2018年   38篇
  2017年   27篇
  2016年   51篇
  2015年   106篇
  2014年   96篇
  2013年   107篇
  2012年   182篇
  2011年   140篇
  2010年   88篇
  2009年   58篇
  2008年   98篇
  2007年   89篇
  2006年   77篇
  2005年   59篇
  2004年   61篇
  2003年   54篇
  2002年   38篇
  2001年   3篇
  2000年   5篇
  1999年   7篇
  1998年   8篇
  1997年   6篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   4篇
  1991年   3篇
  1989年   1篇
  1988年   2篇
  1986年   5篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有1558条查询结果,搜索用时 15 毫秒
971.
Intrauterine growth restriction is a significant problem worldwide, resulting in increased rates of neonatal morbidity and mortality, as well as increased risks for metabolic and cardiovascular disease. The present study investigated the role of maternal undernutrition and l-arginine administration on fetal growth and development. Embryo transfer was utilized to generate genetically similar singleton pregnancies. On Day 35 of gestation, ewes were assigned to receive either 50 or 100% of their nutritional requirements. Ewes received i.v. injections of either saline or l-arginine three times daily from Day 100 to Day 125. Fetal growth was assessed at necropsy on Day 125. Maternal dietary manipulation altered circulating concentrations of leptin, progesterone, and amino acids in maternal plasma. Fetal weight was reduced in nutrient-restricted ewes on Day 125 compared with 100% fed ewes. Compared with saline-treated underfed ewes, maternal l-arginine administration did not affect fetal weight but increased weight of the fetal pancreas by 32% and fetal peri-renal brown adipose tissue mass by 48%. These results indicate that l-arginine administration enhanced fetal pancreatic and brown adipose tissue development. The postnatal effects of increased pancreatic and brown adipose tissue growth warrant further study.  相似文献   
972.
Cyanobacteria-plant symbioses play an important role in many ecosystems due to the fixation of atmospheric nitrogen (N) by the cyanobacterial symbiont. The ubiquitous feather moss Pleurozium schreberi (Brid.) Mitt. is colonized by cyanobacteria in boreal systems with low N deposition. Here, cyanobacteria fix substantial amounts of N2 and represent a potential N source. The feather moss appears to be resistant to decomposition, which could be partly a result of toxins produced by cyanobacteria. To assess how cyanobacteria modulated the toxicity of moss, we measured inhibition of bacterial growth. Moss with varying numbers of cyanobacteria was added to soil bacteria to test the inhibition of their growth using the thymidine incorporation technique. Moss could universally inhibit bacterial growth, but moss toxicity did not increase with N2 fixation rates (numbers of cyanobacteria). Instead, we see evidence for a negative relationship between moss toxicity to bacteria and N2 fixation, which could be related to the ecological mechanisms that govern the cyanobacteria – moss relationship. We conclude that cyanobacteria associated with moss do not contribute to the resistance to decomposition of moss, and from our results emerges the question as to what type of relationship the moss and cyanobacteria share.  相似文献   
973.
Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development.  相似文献   
974.
The larvae of the wax moth, Galleria  mellonella , have been used experimentally to host a range of bacterial and fungal pathogens. In this study we evaluated the suitability of G mellonella as an alternative animal model of Salmonella infection. Using a range of inoculum doses we established that the LD50 of Salmonella Typhimurium strain NCTC 12023 was 3.6 × 103 bacteria per larva. Further, a set of isogenic mutant strains depleted of known virulence factors was tested to identify determinants essential for S Typhimurium pathogenesis. Mutants depleted of one or both of the type III secretion systems encoded by Salmonella Pathogenicity Islands 1 and 2 showed no virulence defect. In contrast, we observed reduced pathogenic potential of a phoQ mutant indicating an important role for the PhoPQ two-component signal transduction system. Lipopolysaccharide (LPS) structure was also shown to influence Salmonella virulence in G mellonella . A waaL (rfaL) mutant, which lacks the entire O-antigen (OAg), was virtually avirulent, while a wzz ST/wzz fepE double mutant expressing only a very short OAg was highly attenuated for virulence. Furthermore, shortly after infection both LPS mutant strains showed decreased replication when compared to the wild type in a flow cytometry-based competitive index assay. In this study we successfully established a G . mellonella model of S . Typhimurium infection. By identifying PhoQ and LPS OAg length as key determinants of virulence in the wax moth larvae we proved that there is an overlap between this and other animal model systems, thus confirming that the G mellonella infection model is suitable for assessing aspects of Salmonella virulence function.  相似文献   
975.
Patients with schizophrenia and their siblings typically show subtle changes of brain structures, such as a reduction of hippocampal volume. Hippocampal volume is heritable, may explain a variety of cognitive symptoms of schizophrenia and is thus considered an intermediate phenotype for this mental illness. The aim of our analyses was to identify single-nucleotide polymorphisms (SNP) related to hippocampal volume without making prior assumptions about possible candidate genes. In this study, we combined genetics, imaging and neuropsychological data obtained from the Mind Clinical Imaging Consortium study of schizophrenia (n = 328). A total of 743,591 SNPs were tested for association with hippocampal volume in a genome-wide association study. Gene expression profiles of human hippocampal tissue were investigated for gene regions of significantly associated SNPs. None of the genetic markers reached genome-wide significance. However, six highly correlated SNPs (rs4808611, rs35686037, rs12982178, rs1042178, rs10406920, rs8170) on chromosome 19p13.11, located within or in close proximity to the genes NR2F6, USHBP1, and BABAM1, as well as four SNPs in three other genomic regions (chromosome 1, 2 and 10) had p-values between 6.75×10−6 and 8.3×10−7. Using existing data of a very recently published GWAS of hippocampal volume and additional data of a multicentre study in a large cohort of adolescents of European ancestry, we found supporting evidence for our results. Furthermore, allelic differences in rs4808611 and rs8170 were highly associated with differential mRNA expression in the cis-acting region. Associations with memory functioning indicate a possible functional importance of the identified risk variants. Our findings provide new insights into the genetic architecture of a brain structure closely linked to schizophrenia. In silico replication, mRNA expression and cognitive data provide additional support for the relevance of our findings. Identification of causal variants and their functional effects may unveil yet unknown players in the neurodevelopment and the pathogenesis of neuropsychiatric disorders.  相似文献   
976.
The weevils Sitona gressorius and Sitona griseus are specialist herbivores on lupins in Europe. The adult weevils feed on the leaves, and the larvae on the root nodules of the plants. This causes severe damage to lupin crops. In the present study, the feeding preferences of lupin weevil adults on different lupin genotypes were examined with respect to a possible effect of lupin alkaloids on host selection. A total of 12 genotypes from the species Lupinus albus, L. angustifolius, L. luteus, and L. nanus were grown in a field experiment and the feeding damage on the leaves caused by naturally occurring lupin weevil adults was estimated. Additionally, a feeding choice test with S. gressorius adults was performed to examine feeding preferences under laboratory conditions. A gas chromatographic analysis provided information on the alkaloid content and profiles in the leaves of the tested lupin genotypes. In the field experiment, significant differences in the extent of the feeding damage within the 12 lupin genotypes were observed. The dual-choice feeding bioassay did not show discrimination of lupin species, but two L. angustifolius genotypes were significantly less affected than the standard L. luteus “Bornal”. The alkaloid analysis revealed large contrasts in alkaloid concentrations and profiles in the leaves of the tested genotypes. Correlation analysis with the results from the field and laboratory did not indicate a significant influence of the total foliar alkaloid content on the extent of weevil feeding.  相似文献   
977.
978.
979.
980.

SUMMARY

Neisseria meningitidis is a Gram-negative microorganism that exists exclusively in humans and can cause devastating invasive disease. Although capsular polysaccharide-based vaccines against serogroups A, C, Y, and W135 are widely available, the pathway to a broadly protective vaccine against serogroup B has been more complex. The last 11 years has seen the discovery and development of the N. meningitidis serogroup B (MnB) outer membrane protein factor H binding protein (fHBP) as a vaccine component. Since the initial discovery of fHBP, a tremendous amount of work has accumulated on the diversity, structure, and regulation of this important protein. fHBP has proved to be a virulence factor for N. meningitidis and a target for functional bactericidal antibodies. fHBP is critical for survival of meningococci in the human host, as it is responsible for the primary interaction with human factor H (fH). Binding of hfH by the meningococcus serves to downregulate the host alternative complement pathway and helps the organism evade host innate immunity. Preclinical studies have shown that an fHBP-based vaccine can elicit serum bactericidal antibodies capable of killing MnB, and the vaccine has shown very encouraging results in human clinical trials. This report reviews our current knowledge of fHBP. In particular, we discuss the recent advances in our understanding of fHBP, its importance to N. meningitidis, and its potential role as a vaccine for preventing MnB disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号