首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2742篇
  免费   223篇
  国内免费   2篇
  2023年   12篇
  2022年   26篇
  2021年   69篇
  2020年   39篇
  2019年   47篇
  2018年   63篇
  2017年   39篇
  2016年   87篇
  2015年   152篇
  2014年   162篇
  2013年   163篇
  2012年   283篇
  2011年   230篇
  2010年   142篇
  2009年   113篇
  2008年   177篇
  2007年   146篇
  2006年   134篇
  2005年   123篇
  2004年   106篇
  2003年   109篇
  2002年   82篇
  2001年   16篇
  2000年   26篇
  1999年   31篇
  1998年   24篇
  1997年   14篇
  1996年   13篇
  1995年   19篇
  1994年   12篇
  1993年   11篇
  1992年   17篇
  1991年   18篇
  1990年   15篇
  1989年   17篇
  1988年   15篇
  1987年   16篇
  1986年   17篇
  1985年   14篇
  1984年   16篇
  1983年   12篇
  1982年   10篇
  1981年   10篇
  1980年   7篇
  1975年   11篇
  1974年   12篇
  1973年   6篇
  1972年   9篇
  1971年   8篇
  1970年   7篇
排序方式: 共有2967条查询结果,搜索用时 281 毫秒
41.
N. Allsopp  W. D. Stock 《Oecologia》1992,91(2):281-287
Summary The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.  相似文献   
42.
Crustacea Malacostraca were hitherto unknown from fresh waters of the Canary Islands. A new species of Amphipoda, Rhipidogammarus rheophilus, has recently been discovered in springs and spring brooks in Tenerife.
Resumen Crustacea Malacostraca era hasta ahora desconocida de las aguas dulces de las Islas Canarias. Una nueva especie de anfípodo, Rhipidogammarus rheophilus, ha sido recientemente descubierto de fuentes y manantiales de Tenerife.
  相似文献   
43.
No multistrandedness in mitotic chromosomes of Drosophila melanogaster   总被引:1,自引:1,他引:0  
Feulgen cytophotometric measurements of neuroblasts in the first and third instar larvae of Drosophila melanogaster reveal the same DNA content for metaphases with chromosomes of different size. The total absorbance of all measured metaphases gives the four-fold value of that of the spermatids. Accordingly there seem to be no reasons to retain the assumption of a multistranded structure for the large chromosomes of metaphases in the third instar larvae.  相似文献   
44.
45.
46.
Species loss is a global issue. With up to a million species at risk and insufficient protected area to maintain the world's biodiversity, humanity will increasingly need to rely on species re‐introductions to locally restore diversity and function. However, such restoration attempts are bound to fail when ecological communities get locked in a closed state that is resistant to recovery. It is presently unknown how to repair these closed systems. We use mathematical models to identify ways out of this problem. We first show how ecological communities may enter a closed state, to then explain how to open them up again for restoration of their original diversity. We find that restoration is often still possible shortly after initial species loss, as (1) the secondary extinctions that produce closure have not happened yet and (2) mild population fluctuations still allow successful repair during a transient postdisturbance phase. However, after this typically short window of opportunity for restoration, the system enters a new equilibrium, which may be a closed state. Our analysis shows how to take ecological communities out of the closed state: Appropriate management of carrying capacities produces a regime of mild population fluctuations that opens a window for successful species re‐introductions. These windows can be perpetually recurring or permanently open. Such opportunities for repair can be absent under regimes of wild cycles or perfect stability. We conclude that mild cycles may open windows of opportunity for the repair of communities that have become resistant to recovery.  相似文献   
47.
Environmental DNA studies targeting multiple taxa using metabarcoding provide remarkable insights into levels of species diversity in any habitat. The main drawbacks are the presence of primer bias and difficulty in identifying rare species. We tested a DNA sequence‐capture method in parallel with the metabarcoding approach to reveal possible advantages of one method over the other. Both approaches were performed using the same eDNA samples and the same 18S and COI regions, followed by high throughput sequencing. Metabarcoded eDNA libraries were PCR amplified with one primer pair from 18S and COI genes. DNA sequence‐capture libraries were enriched with 3,639 baits targeting the same gene regions. We tested amplicon sequence variants (ASVs) and operational taxonomic units (OTUs) in silico approaches for both markers and methods, using for this purpose the metabarcoding data set. ASVs methods uncovered more species for the COI gene, whereas the opposite occurred for the 18S gene, suggesting that clustering reads into OTUs could bias diversity richness especially using 18S with relaxed thresholds. Additionally, metabarcoding and DNA sequence‐capture recovered 80%–90% of the control sample species. DNA sequence‐capture was 8x more expensive, nonetheless it identified 1.5x more species for COI and 13x more genera for 18S than metabarcoding. Both approaches offer reliable results, sharing ca. 40% species and 72% families and retrieve more taxa when nuclear and mitochondrial markers are combined. eDNA metabarcoding is quite well established and low‐cost, whereas DNA‐sequence capture for biodiversity assessment is still in its infancy, is more time‐consuming but provides more taxonomic assignments.  相似文献   
48.
Plant and Soil - Root-released carboxylates enhance the availability of manganese (Mn), which enters roots through transporters with low substrate specificity. Leaf Mn concentration ([Mn]) has been...  相似文献   
49.

Understanding the timescales that shape spatial genetic structure is pivotal to ascertain the impact of habitat fragmentation on the genetic diversity and reproductive viability of long-lived plant populations. Combining genetic and ecological information with current and past fragmentation conditions allows the identification of the main drivers important in shaping population structure and declines in reproduction, which is crucial for informing conservation strategies. Using historic aerial photographs, we defined the past fragmentation conditions for the shrub Conospermum undulatum, a species now completely embedded in an urban area. We explored the impact of current and past conditions on its genetic layout and assessed the effects of genetic and environmental factors on its reproduction. The historically high structural connectivity was evident in the genetics of the species. Despite the current intense fragmentation, we found similar levels of genetic diversity across populations and a weak spatial genetic structure. Historical connectivity was negatively associated with genetic differentiation among populations and positively related to within-population genetic diversity. Variation partitioning of reproductive performance explained?~?66% of the variance, showing significant influences for genetic (9%), environmental (15%), and combined (42%) fractions. Our study highlights the importance of considering the historical habitat dynamics when investigating fragmentation consequences in long-lived plants. A detailed characterization of fragmentation from 1953 has shown how low levels of genetic fixation are due to extensive gene flow through the non-fragmented landscape. Moreover, knowledge of the relationships between genetic and environmental variation and reproduction can help to implement effective conservation strategies, particularly in highly dynamic landscapes.

  相似文献   
50.
Immune recognition in plants is governed by two major classes of receptors: pattern recognition receptors (PRRs) and nucleotide-binding leucine-rich repeat receptors (NLRs). Located at the cell surface, PRRs bind extracellular ligands originating from microbes (indicative of “non-self”) or damaged plant cells (indicative of “infected-self”), and trigger signaling cascades to protect against infection. Located intracellularly, NLRs sense pathogen-induced physiological changes and trigger localized cell death and systemic resistance. Immune responses are under tight regulation in order to maintain homeostasis and promote plant health. In a forward-genetic screen to identify regulators of PRR-mediated immune signaling, we identified a novel allele of the membrane-attack complex and perforin (MACPF)-motif containing protein CONSTITUTIVE ACTIVE DEFENSE 1 (CAD1) resulting from a missense mutation in a conserved N-terminal cysteine. We show that cad1-5 mutants display deregulated immune signaling and symptoms of autoimmunity dependent on the lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), suggesting that CAD1 integrity is monitored by the plant immune system. We further demonstrate that CAD1 localizes to both the cytosol and plasma membrane using confocal microscopy and subcellular fractionation. Our results offer new insights into immune homeostasis and provide tools to further decipher the intriguing role of MACPF proteins in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号