首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5091篇
  免费   501篇
  国内免费   1篇
  2023年   20篇
  2022年   35篇
  2021年   89篇
  2020年   63篇
  2019年   71篇
  2018年   56篇
  2017年   69篇
  2016年   99篇
  2015年   252篇
  2014年   240篇
  2013年   294篇
  2012年   398篇
  2011年   410篇
  2010年   258篇
  2009年   210篇
  2008年   289篇
  2007年   309篇
  2006年   289篇
  2005年   309篇
  2004年   268篇
  2003年   257篇
  2002年   249篇
  2001年   53篇
  2000年   42篇
  1999年   55篇
  1998年   83篇
  1997年   43篇
  1996年   38篇
  1995年   39篇
  1994年   36篇
  1993年   47篇
  1992年   40篇
  1991年   28篇
  1990年   31篇
  1989年   22篇
  1988年   12篇
  1987年   35篇
  1986年   20篇
  1985年   26篇
  1984年   39篇
  1983年   40篇
  1982年   37篇
  1981年   25篇
  1980年   37篇
  1979年   17篇
  1978年   30篇
  1977年   19篇
  1976年   15篇
  1974年   18篇
  1973年   19篇
排序方式: 共有5593条查询结果,搜索用时 15 毫秒
141.
Understanding the seasonal movements and distribution patterns of migratory species over ocean basin scales is vital for appropriate conservation and management measures. However, assessing populations over remote regions is challenging, particularly if they are rare. Blue whales (Balaenoptera musculus spp) are an endangered species found in the Southern and Indian Oceans. Here two recognized subspecies of blue whales and, based on passive acoustic monitoring, four “acoustic populations” occur. Three of these are pygmy blue whale (B.m. brevicauda) populations while the fourth is the Antarctic blue whale (B.m. intermedia). Past whaling catches have dramatically reduced their numbers but recent acoustic recordings show that these oceans are still important habitat for blue whales. Presently little is known about the seasonal movements and degree of overlap of these four populations, particularly in the central Indian Ocean. We examined the geographic and seasonal occurrence of different blue whale acoustic populations using one year of passive acoustic recording from three sites located at different latitudes in the Indian Ocean. The vocalizations of the different blue whale subspecies and acoustic populations were recorded seasonally in different regions. For some call types and locations, there was spatial and temporal overlap, particularly between Antarctic and different pygmy blue whale acoustic populations. Except on the southernmost hydrophone, all three pygmy blue whale acoustic populations were found at different sites or during different seasons, which further suggests that these populations are generally geographically distinct. This unusual blue whale diversity in sub-Antarctic and sub-tropical waters indicates the importance of the area for blue whales in these former whaling grounds.  相似文献   
142.
Neural crest cells exhibit dramatic migration behaviors as they populate their distant targets. Using a line of zebrafish expressing green fluorescent protein (sox10:EGFP) in neural crest cells we developed an assay to analyze and quantify cell migration as a population, and use it here to characterize in detail the subtle defects in cell migration caused by ethanol exposure during early development. The challenge was to quantify changes in the in vivo migration of all Sox10:EGFP expressing cells in the visual field of time-lapse movies. To perform this analysis we used an Optical Flow algorithm for motion detection and combined the analysis with a fit to an affine transformation. Through this analysis we detected and quantified significant differences in the cell migrations of Sox10:EGFP positive cranial neural crest populations in ethanol treated versus untreated embryos. Specifically, treatment affected migration by increasing the left-right asymmetry of the migrating cells and by altering the direction of cell movements. Thus, by applying this novel computational analysis, we were able to quantify the movements of populations of cells, allowing us to detect subtle changes in cell behaviors. Because cranial neural crest cells contribute to the formation of the frontal mass these subtle differences may underlie commonly observed facial asymmetries in normal human populations.  相似文献   
143.
B lymphocytes are compartmentalized within lymphoid organs. The organization of these compartments depends upon signaling initiated by G-protein linked chemoattractant receptors. To address the importance of the G-proteins Gαi2 and Gαi3 in chemoattractant signaling we created mice lacking both proteins in their B lymphocytes. While bone marrow B cell development and egress is grossly intact; mucosal sites, splenic marginal zones, and lymph nodes essentially lack B cells. There is a partial block in splenic follicular B cell development and a 50-60% reduction in splenic B cells, yet normal numbers of splenic T cells. The absence of Gαi2 and Gαi3 in B cells profoundly disturbs the architecture of lymphoid organs with loss of B cell compartments in the spleen, thymus, lymph nodes, and gastrointestinal tract. This results in a severe disruption of B cell function and a hyper-IgM like syndrome. Beyond the pro-B cell stage, B cells are refractory to chemokine stimulation, and splenic B cells are poorly responsive to antigen receptor engagement. Gαi2 and Gαi3 are therefore critical for B cell chemoattractant receptor signaling and for normal B cell function. These mice provide a worst case scenario of the consequences of losing chemoattractant receptor signaling in B cells.  相似文献   
144.
Phenotypes respond to environments experienced directly by an individual, via phenotypic plasticity, or to the environment experienced by ancestors, via transgenerational environmental effects. The adaptive value of environmental effects depends not only on the strength and direction of the induced response but also on how long the response persists within and across generations, and how stably it is expressed across environments that are encountered subsequently. Little is known about the genetic basis of those distinct components, or even whether they exhibit genetic variation. We tested for genetic differences in the inducibility, temporal persistence, and environmental stability of transgenerational environmental effects in Arabidopsis thaliana. Genetic variation existed in the inducibility of transgenerational effects on traits expressed across the life cycle. Surprisingly, the persistence of transgenerational effects into the third generation was uncorrelated with their induction in the second generation. Although environmental effects for some traits in some genotypes weakened over successive generations, others were stronger or even in the opposite direction in more distant generations. Therefore, transgenerational effects in more distant generations are not merely caused by the retention or dissipation of those expressed in prior generations, but they may be genetically independent traits with the potential to evolve independently.  相似文献   
145.
146.

Background

Changes in fibronectin (Fn) matrix remodeling contribute to mammary tumor angiogenesis and are related to altered behavior of adipogenic stromal cells; yet, the underlying mechanisms remain unclear due in part to a lack of reductionist model systems that allow the inherent complexity of cell-derived extracellular matrices (ECMs) to be deciphered. In particular, breast cancer-associated adipogenic stromal cells not only enhance the composition, quantity, and rigidity of deposited Fn, but also partially unfold these matrices. However, the specific effect of Fn conformation on tumor angiogenesis is undefined.

Methods

Decellularized matrices and a conducting polymer device consisting of poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) were used to examine the effect of Fn conformation on the behavior of 3T3-L1 preadipocytes. Changes in cell adhesion and proangiogenic capability were tested via cell counting and by quantification of vascular endothelial growth factor (VEGF) secretion, respectively. Integrin-blocking antibodies were utilized to examine varied integrin specificity as a potential mechanism.

Results

Our findings suggest that tumor-associated partial unfolding of Fn decreases adhesion while enhancing VEGF secretion by breast cancer-associated adipogenic precursor cells, and that altered integrin specificity may underlie these changes.

Conclusions and general significance

These results not only have important implications for our understanding of tumorigenesis, but also enhance knowledge of cell-ECM interactions that may be harnessed for other applications including advanced tissue engineering approaches. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   
147.
Iron deficiency anemia affects many pregnant women and young infants worldwide. The health impact is significant, given iron’s known role in many body functions, including oxidative and lipid metabolism, protein synthesis and brain neurochemistry. The following research determined if 1H NMR spectroscopy-based metabolomic analysis of cerebrospinal fluid (CSF) could detect the adverse influence of early life iron deficiency on the central nervous system. Using a controlled dietary model in 43 infant primates, distinct differences were found in spectra acquired at 600 MHz from the CSF of anemic monkeys. Three metabolite ratios, citrate/pyruvate, citrate/lactate and pyruvate/glutamine ratios, differed significantly in the iron deficient infant and then normalized following the consumption of dietary iron and improvement of clinical indices of anemia in the heme compartment. This distinctive metabolomic profile associated with anemia in the young infant indicates that CSF can be employed to track the neurological effects of iron deficiency and benefits of iron supplementation.  相似文献   
148.
As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems.  相似文献   
149.
150.
Three homologues of TGF-β exist in mammals as follows: TGF-β1, TGF-β2, and TGF-β3. All three proteins share high homology in their amino acid sequence, yet each TGF-β isoform has unique heterologous motifs that are highly conserved during evolution. Although these TGF-β proteins share similar properties in vitro, isoform-specific properties have been suggested through in vivo studies and by the unique phenotypes for each TGF-β knock-out mouse. To test our hypothesis that each of these homologues has nonredundant functions, and to identify such isoform-specific roles, we genetically exchanged the coding sequence of the mature TGF-β1 ligand with a sequence from TGF-β3 using targeted recombination to create chimeric TGF-β1/3 knock-in mice (TGF1Lβ3/Lβ3). In the TGF1Lβ3/Lβ3 mouse, localization and activation still occur through the TGF-β1 latent associated peptide, but cell signaling is triggered through the TGF-β3 ligand that binds to TGF-β receptors. Unlike TGF1−/− mice, the TGF1Lβ3/Lβ3 mice show neither embryonic lethality nor signs of multifocal inflammation, demonstrating that knock-in of the TGF-β3 ligand can prevent the vasculogenesis defects and autoimmunity associated with TGF-β1 deficiency. However, the TGF1Lβ3/Lβ3 mice have a shortened life span and display tooth and bone defects, indicating that the TGF-β homologues are not completely interchangeable. Remarkably, the TGF1Lβ3/Lβ3 mice display an improved metabolic phenotype with reduced body weight gain and enhanced glucose tolerance by induction of beneficial changes to the white adipose tissue compartment. These findings reveal both redundant and unique nonoverlapping functional diversity in TGF-β isoform signaling that has relevance to the design of therapeutics aimed at targeting the TGF-β pathway in human disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号