首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5801篇
  免费   529篇
  国内免费   1篇
  6331篇
  2022年   36篇
  2021年   94篇
  2020年   73篇
  2019年   84篇
  2018年   60篇
  2017年   79篇
  2016年   118篇
  2015年   270篇
  2014年   256篇
  2013年   329篇
  2012年   410篇
  2011年   433篇
  2010年   266篇
  2009年   220篇
  2008年   308篇
  2007年   323篇
  2006年   307篇
  2005年   312篇
  2004年   277篇
  2003年   276篇
  2002年   276篇
  2001年   82篇
  2000年   62篇
  1999年   65篇
  1998年   86篇
  1997年   62篇
  1996年   48篇
  1995年   47篇
  1994年   46篇
  1993年   59篇
  1992年   49篇
  1991年   36篇
  1990年   46篇
  1989年   29篇
  1988年   32篇
  1987年   42篇
  1986年   33篇
  1985年   29篇
  1984年   49篇
  1983年   49篇
  1982年   47篇
  1981年   33篇
  1980年   44篇
  1979年   22篇
  1978年   35篇
  1977年   25篇
  1976年   26篇
  1975年   22篇
  1974年   28篇
  1973年   32篇
排序方式: 共有6331条查询结果,搜索用时 0 毫秒
71.
Damage-associated molecular patterns, including mitochondrial DNA (mtDNA) are released during hemorrhage resulting in the development of endotheliopathy. Tranexamic acid (TXA), an antifibrinolytic drug used in hemorrhaging patients, enhances their survival despite the lack of a comprehensive understanding of its cellular mechanisms of action. The present study is aimed to elucidate these mechanisms, with a focus on mitochondria. We found that TXA inhibits the release of endogenous mtDNA from granulocytes and endothelial cells. Furthermore, TXA attenuates the loss of the endothelial monolayer integrity induced by exogenous mtDNA. Using the Seahorse XF technology, it was demonstrated that TXA strongly stimulates mitochondrial respiration. Studies using Mitotracker dye, cells derived from mito-QC mice, and the ActivSignal IPAD assay, indicate that TXA stimulates biogenesis of mitochondria and inhibits mitophagy. These findings open the potential for improvement of the strategies of TXA applications in trauma patients and the development of more efficient TXA derivatives.  相似文献   
72.
Forty-five individuals with generalized anxiety (38 with GAD as defined by DSM-III) were randomized to 4 treatment conditions or a waiting list control. Patients received 8 sessions of either frontal EMG biofeedback, biofeedback to increase EEG alpha, biofeedback to decrease EEG alpha, or a pseudomeditation control condition. All treated subjects showed significant reductions in STAI-Trait Anxiety and psychophysiologic symptoms on the Psychosomatic Symptom Checklist. Only alpha-increase biofeedback subjects showed significant reductions in heart rate reactivity to stressors at a separate psychophysiological testing session. Decreased self-report of anxiety was maintained at 6 weeks posttreatment.  相似文献   
73.

Background

Understanding the emergence and spread of multidrug-resistant tuberculosis (MDR-TB) is crucial for its control. MDR-TB in previously treated patients is generally attributed to the selection of drug resistant mutants during inadequate therapy rather than transmission of a resistant strain. Traditional genotyping methods are not sufficient to distinguish strains in populations with a high burden of tuberculosis and it has previously been difficult to assess the degree of transmission in these settings. We have used whole genome analysis to investigate M. tuberculosis strains isolated from treatment experienced patients with MDR-TB in Uganda over a period of four years.

Methods and Findings

We used high throughput genome sequencing technology to investigate small polymorphisms and large deletions in 51 Mycobacterium tuberculosis samples from 41 treatment-experienced TB patients attending a TB referral and treatment clinic in Kampala. This was a convenience sample representing 69% of MDR-TB cases identified over the four year period. Low polymorphism was observed in longitudinal samples from individual patients (2-15 SNPs). Clusters of samples with less than 50 SNPs variation were examined. Three clusters comprising a total of 8 patients were found with almost identical genetic profiles, including mutations predictive for resistance to rifampicin and isoniazid, suggesting transmission of MDR-TB. Two patients with previous drug susceptible disease were found to have acquired MDR strains, one of which shared its genotype with an isolate from another patient in the cohort.

Conclusions

Whole genome sequence analysis identified MDR-TB strains that were shared by more than one patient. The transmission of multidrug-resistant disease in this cohort of retreatment patients emphasises the importance of early detection and need for infection control. Consideration should be given to rapid testing for drug resistance in patients undergoing treatment to monitor the emergence of resistance and permit early intervention to avoid onward transmission.  相似文献   
74.
Ecological carryover effects, or delayed effects of the environment on an organism's phenotype, are central predictors of individual fitness and a key issue in conservation biology. Climate change imposes increasingly variable environmental conditions that may be challenging to early life-history stages in animals with complex life histories, leading to detrimental physiological and fitness effects in later life. Yet, the latent nature of carryover effects, combined with the long temporal scales over which they can manifest, means that this phenomenon remains understudied and is often overlooked in short-term studies limited to single life-history stages. Herein, we review evidence for the physiological carryover effects induced by elevated ultraviolet radiation (UVR; 280–400 nm) as a potential contributor to recent amphibian population declines. UVR exposure causes a suite of molecular, cellular and physiological consequences known to underpin carryover effects in other taxa, but there is a lack of research linking embryonic and larval UVR exposures to fitness consequences post-metamorphosis in amphibians. We propose that the key impacts of UVR on disease-related amphibian declines are facilitated through carryover effects that bridge embryonic and larval UVR exposure with potential increased disease susceptibility post-metamorphosis. We conclude by identifying a practical direction for the study of ecological carryover effects in amphibians that could guide future ecological research in the broader field of conservation physiology. Only by addressing carryover effects can many of the mechanistic links between environmental change and population declines be elucidated.  相似文献   
75.
In humans, assembly of spliceosomal snRNPs (small nuclear ribonucleoproteins) begins in the cytoplasm where the multi-protein SMN (survival of motor neuron) complex mediates the formation of a seven-membered ring of Sm proteins on to a conserved site of the snRNA (small nuclear RNA). The SMN complex contains the SMN protein Gemin2 and several additional Gemins that participate in snRNP biosynthesis. SMN was first identified as the product of a gene found to be deleted or mutated in patients with the neurodegenerative disease SMA (spinal muscular atrophy), the leading genetic cause of infant mortality. In the present study, we report the solution structure of Gemin2 bound to the Gemin2-binding domain of SMN determined by NMR spectroscopy. This complex reveals the structure of Gemin2, how Gemin2 binds to SMN and the roles of conserved SMN residues near the binding interface. Surprisingly, several conserved SMN residues, including the sites of two SMA patient mutations, are not required for binding to Gemin2. Instead, they form a conserved SMN/Gemin2 surface that may be functionally important for snRNP assembly. The SMN-Gemin2 structure explains how Gemin2 is stabilized by SMN and establishes a framework for structure-function studies to investigate snRNP biogenesis as well as biological processes involving Gemin2 that do not involve snRNP assembly.  相似文献   
76.
Regulator of G protein signaling (RGS) proteins constitute a family of over 20 proteins that negatively regulate heterotrimeric G protein-coupled receptor signaling pathways by enhancing endogenous GTPase activities of G protein alpha subunits. RGSZ1, one of the RGS proteins specifically localized to the brain, has been cloned previously and described as a selective GTPase accelerating protein for Galpha(z) subunit. Here, we employed several methods to provide new evidence that RGSZ1 interacts not only with Galpha(z,) but also with Galpha(i), as supported by in vitro binding assays and functional studies. Using glutathione S-transferase fusion protein pull-down assays, glutathione S-transferase-RGSZ1 protein was shown to bind (35)S-labeled Galpha(i1) protein in an AlF(4)(-)dependent manner. The interaction between RGSZ1 and Galpha(i) was confirmed further by co-immunoprecipitation studies and yeast two-hybrid experiments using a quantitative luciferase reporter gene. Extending these observations to functional studies, RGSZ1 accelerated endogenous GTPase activity of Galpha(i1) in single-turnover GTPase assays. Human RGSZ1 functionally regulated GPA1 (a yeast Galpha(i)-like protein)-mediated yeast pheromone response when expressed in a SST2 (yeast RGS protein) knockout strain. In PC12 cells, transfected RGSZ1 blocked mitogen-activated protein kinase activity induced by UK14304, an alpha(2)-adrenergic receptor agonist. Furthermore, RGSZ1 attenuated D2 dopamine receptor agonist-induced serum response element reporter gene activity in Chinese hamster ovary cells. In summary, these data suggest that RGSZ1 serves as a GTPase accelerating protein for Galpha(i) and regulates Galpha(i)-mediated signaling, thus expanding the potential role of RGSZ1 in G protein-mediated cellular activities.  相似文献   
77.
The reference design is a practical and popular choice for microarray studies using two-color platforms. In the reference design, the reference RNA uses half of all array resources, leading investigators to ask: What is the best reference RNA? We propose a novel method for evaluating reference RNAs and present the results of an experiment that was specially designed to evaluate three common choices of reference RNA. We found no compelling evidence in favor of any particular reference. In particular, a commercial reference showed no advantage in our data. Our experimental design also enabled a new way to test the effectiveness of pre-processing methods for two-color arrays. Our results favor using intensity normalization and foregoing background subtraction. Finally, we evaluate the sensitivity and specificity of data quality filters, and we propose a new filter that can be applied to any experimental design and does not rely on replicate hybridizations.  相似文献   
78.
Electroencephalograms (EEG) and visual evoked potentials (VEP) in mice were recorded to evaluate loss of cortical function during the first 30 s after euthanasia by various methods. Tracheal cannulae (for positive-pressure ventilation, PPV) and cortical surface electrodes were placed in mice anesthetized with inhaled halothane. Succinylcholine was used to block spontaneous breathing in the mice, which then underwent continuous EEG recording. Photic stimuli (1 Hz) were presented to produce VEPs superimposed on the EEG. Anesthesia was discontinued immediately before euthanasia. Compared with that obtained before euthanasia, EEG activity during the 30-s study period immediately after euthanasia was significantly decreased after cervical dislocation (at 5 to 10 s), 100% PPV-CO2 (at 10 to 15 s), decapitation (at 15 to 20 s), and cardiac arrest due to KCl injection (at 20 to 25 s) but not after administration of 70% PPV-CO2. Similarly, these euthanasia methods also reduced VEP amplitude, although 100% PPV-CO2 treatment affected VEP amplitude more than it did EEG activity. Thus, 100% PPV-CO2 treatment significantly decreased VEP beginning 5 to 10 s after administration, with near abolition of VEP by 30 s. VEP amplitude was significantly reduced at 5 to 10 s after cervical dislocation and at 10 to 15 s after decapitation but not after either KCl or 70% PPV-CO2 administration. The data demonstrate that 100% PPV-CO2, decapitation, and cervical dislocation lead to rapid disruption of cortical function as measured by 2 different methods. In comparison, 70% PPV-CO2 and cardiac arrest due to intracardiac KCl injection had less rapid effects on cortical function.  相似文献   
79.

Background  

Unrepaired DNA double-stranded breaks (DSBs) cause chromosomal rearrangements, loss of genetic information, neoplastic transformation or cell death. The nonhomologous end joining (NHEJ) pathway, catalyzing sequence-independent direct rejoining of DSBs, is a crucial mechanism for repairing both stochastically occurring and developmentally programmed DSBs. In lymphocytes, NHEJ is critical for both development and genome stability. NHEJ defects lead to severe combined immunodeficiency (SCID) and lymphoid cancer predisposition in both mice and humans. While NHEJ has been thoroughly investigated in lymphocytes, the importance of NHEJ in other cell types, especially with regard to tumor suppression, is less well documented. We previously reported evidence that the NHEJ pathway functions to suppress a range of nonlymphoid tumor types, including various classes of sarcomas, by unknown mechanisms.  相似文献   
80.
An antiserum prepared against the purified protein carboxyl methltransferase (PCMT) from bovine brain has been used to compare testicular and ovarian levels of the enzyme and to study the regulation of PCMT concentrations during spermatogenesis. The PCMT, which specifically modifies age-damaged aspartyl residues, is present at a significantly higher concentration in mature mouse testis than in ovary. However, the PCMT is present at nearly equal concentrations in extracts of germ cell-deficient ovaries and testes obtained from mutant atrichosislatrichosis mice. In normal testis, the concentration of the PCMT increases severalfold during the first 4–5 weeks after birth, paralleling the appearance and maturation of testicular germ cells. Both immunochemical and enzymatic measurements of PCMT specific activities in purified spermatogenic cell preparations indicate that PCMT levels are twofold and 3.5-fold higher in round spermatids and residual bodies, respectively, than in pachytene spermatocytes. The results are consistent with the enhanced synthesis and/or stability of the PCMT in spermatogenic cells and with the continued translation of the PCMT during the haploid portion of spermatogenesis. The relatively high levels of PCMT in spermatogenic cells may be important for the extensive metabolism of proteins accompanying spermatid condensation or for the repair of damaged proteins in translationally inactive spermatozoa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号