首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   76篇
  2022年   5篇
  2021年   5篇
  2020年   4篇
  2017年   6篇
  2016年   10篇
  2015年   14篇
  2014年   21篇
  2013年   12篇
  2012年   21篇
  2011年   23篇
  2010年   18篇
  2009年   19篇
  2008年   13篇
  2007年   21篇
  2006年   21篇
  2005年   15篇
  2004年   11篇
  2003年   13篇
  2002年   17篇
  2001年   12篇
  2000年   11篇
  1999年   10篇
  1997年   10篇
  1996年   3篇
  1992年   8篇
  1991年   9篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
  1987年   9篇
  1986年   6篇
  1985年   10篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   11篇
  1980年   5篇
  1978年   9篇
  1977年   4篇
  1974年   8篇
  1973年   4篇
  1972年   7篇
  1971年   3篇
  1970年   5篇
  1969年   3篇
  1968年   5篇
  1967年   2篇
  1966年   4篇
  1965年   2篇
  1962年   2篇
排序方式: 共有486条查询结果,搜索用时 46 毫秒
41.
McCormick, N. G. (University of Washington, Seattle), E. J. Ordal, and H. R. Whiteley. Degradation of pyruvate by Micrococcus lactilyticus. II. Studies of cofactors in the formate-exchange reaction. J. Bacteriol. 83:899-906. 1962.-Enzyme preparations from Micrococcus lactilyticus(2) are rendered inactive with respect to formate exchange by treatment with charcoal or Dowex-50, by dialysis, or by fractionation with ammonium sulfate. The activity may be completely restored by a "kochsaft" preparation (BES) obtained from M. lactilyticus and partially restored by similar BES preparations from Escherichia coli and Clostridium butyricum. Diphosphothiamine is required for formate exchange but full activity cannot be restored by known cofactors. Brief exposure to increased temperatures, air, extremes of pH, and absorption with charcoal and Dowex-50 decrease the cofactor activity of BES preparations. The addition of BES preparations from E. coli and Streptococcus faecalis causes a shift in the degradation of pyruvate by extracts of M. lactilyticus from the phosphoroclastic cleavage (to acetyl phosphate and formate) to the dismutation of pyruvate (to lactate, acetate, and carbon dioxide).C. cylindrosporum was found to mediate the formate-exchange reaction; the activity of crude extracts was stimulated by M. lactilyticus and C. butyricum BES preparations. M. lactilyticus BES also increased the formate-exchange activity of extracts of E. coli.  相似文献   
42.
OBJECTIVE: To investigate immunohistochemical staining of hepatocyte paraffin-1 (HepPar1), alpha-fetoprotein (AFP), polyclonal carcinoembryonic antigen (pCEA), monoclonal CEA (mCEA), MOC-31 and CD10 for differential diagnosis of hepatocellular carcinoma (HCC) from metastatic adenocarcinoma (MA) on fine needle aspiration biopsy (FNAB). STUDY DESIGN: Fifty-one archival, paraffin-embedded FNAB cell blocks, representing 18 HCCs and 33 MAs, were immunostained with antibodies for AFP, CD10, pCEA, mCEA, HepPar1 and MOC-31. RESULTS: HepPar1, AFP, canalicular pCEA and CD10 were positive in 78% (14 of 18), 28% (5 of 18), 72% (13 of 18) and 35% (6 of 17) of cases of HCC, respectively. The 33 MAs were negative for immunostaining of the above antibodies except for one AFP-positive MA. Ninety-seven percent (31 of 32) of the MAs and 6% (1 of 17) of the HCCs were positive for MOC-31. Monoclonal CEA was immunoreactive on 82% (27 of 33) of the MAs and negative on all the HCCs. CONCLUSION: HepPar1 was the most sensitive marker for HCC, followed by canalicular staining for pCEA. For MA, MOC-31 was the most sensitive marker; mCEA was slightly less sensitive but more specific. We suggest using HepPar1, pCEA, CD10, MOC-31 and mCEA as a panel for distinguishing HCC from MA in liver FNAB.  相似文献   
43.
Numerous previously uncharacterized molecules resident within the low molecular weight circulatory proteome may provide a picture of the ongoing pathophysiology of an organism. Recently, proteomic signatures composed of low molecular weight molecules have been identified using mass spectrometry combined with bioinformatic algorithms. Attempts to sequence and identify the molecules that underpin the fingerprints are currently underway. The finding that many of these low molecular weight molecules may exist bound to circulating carrier proteins affords a new opportunity for fractionation and separation techniques prior to mass spectrometry-based analysis. In this study we demonstrate a method whereby nanoporous substrates may be used for the facile and reproducible fractionation and selective binding of the serum-based biomarker material, including subcellular proteins found within the serum. Aminopropyl-coated nanoporous silicon, when exposed to serum, can deplete serum of proteins and yield a serum with a distinct, altered MS profile. Additionally, aminopropyl-coated, nanoporous controlled-pore glass beads are able to bind a subset of serum proteins and release them with stringent elution. The eluted proteins have distinct MS profiles, gel electrophoresis profiles, and differential peptide sequence identities, which vary based on the size of the nanopores. These material surfaces could be employed in strategies for the harvesting and preservation of labile and carrier-protein-bound molecules in the blood.  相似文献   
44.
Liver cell aggregates may be grown in vitro by co-culturing hepatocytes with stellate cells. This method results in more rapid aggregation than hepatocyte-only culture, and appears to enhance cell viability and the expression of markers of liver-specific functions. We consider the early stages of aggregate formation, and develop a new mathematical model to investigate two alternative hypotheses (based on evidence in the experimental literature) for the role of stellate cells in promoting aggregate formation. Under Hypothesis 1, each population produces a chemical signal which affects the other, and enhanced aggregation is due to chemotaxis. Hypothesis 2 asserts that the interaction between the two cell types is by direct physical contact: the stellates extend long cellular processes which pull the hepatocytes into the aggregates. Under both hypotheses, hepatocytes are attracted to a chemical they themselves produce, and the cells can experience repulsive forces due to overcrowding. We formulate non-local (integro-partial differential) equations to describe the densities of cells, which are coupled to reaction-diffusion equations for the chemical concentrations. The behaviour of the model under each hypothesis is studied using a combination of linear stability analysis and numerical simulations. Our results show how the initial rate of aggregation depends upon the cell seeding ratio, and how the distribution of cells within aggregates depends on the relative strengths of attraction and repulsion between the cell types. Guided by our results, we suggest experiments which could be performed to distinguish between the two hypotheses.  相似文献   
45.
Although the observation that Gram-negative bacteria produce outer membrane vesicles (MVs) was made over 40 years ago, their biological roles have become a focus of study only within the past 10 years. Recent progress in this area has revealed that bacterial MVs are utilized for several processes including delivery of toxins to eukaryotic cells, protein and DNA transfer between bacterial cells, and trafficking of cell-cell signals. Some of these roles appear to be generalized among the Gram-negative bacteria while others are restricted to specific bacterial species/strains. Here we review the known roles of MVs, propose other roles for MVs in mediating interspecies and inter-kingdom communication, and discuss the mechanism of MV formation.  相似文献   
46.
47.
48.
The relevance of the acyl homoserine lactone (acyl-HSL) quorum signals N-3-oxododecanoyl-homoserine lactone (3OC12HSL) and N-butanoyl-homoserine lactone to the biology and virulence of Pseudomonas aeruginosa is well investigated. Previously, P. aeruginosa was shown to degrade long-chain, but not short-chain, acyl-HSLs as sole carbon and energy sources (J. J. Huang, J.-I. Han, L.-H. Zhang, and J. R. Leadbetter, Appl. Environ. Microbiol. 69:5941-5949, 2003). A gene encoding an enzyme with acyl-HSL acylase activity, pvdQ (PA2385), was identified, but it was not required for acyl-HSL utilization. This indicated that P. aeruginosa encodes another acyl-HSL acylase, which we identify here. A comparison of total cell proteins of cultures grown with long-acyl acyl-HSLs versus other substrates implicated the involvement of a homolog of PvdQ, the product of gene PA1032, for which we propose the name QuiP. Transposon mutants of quiP were defective for growth when P. aeruginosa was cultured in medium containing decanoyl-HSL as a sole carbon and energy source. Complementation with a functional copy of quiP rescued this growth defect. When P. aeruginosa was grown in buffered lysogeny broth, constitutive expression of QuiP in P. aeruginosa led to decreased accumulations of the quorum signal 3OC12HSL, relative to the wild type. Heterologous expression of QuiP was sufficient to confer long-chain acyl-HSL acylase activity upon Escherichia coli. Examination of gene expression patterns during acyl-HSL-dependent growth of P. aeruginosa further supported the involvement of quiP in signal decay and revealed other genes also possibly involved. It is not yet known under which “natural” conditions quiP is expressed or how P. aeruginosa balances the expression of its quorum-sensing systems with the expression of its acyl-HSL acylase activities.  相似文献   
49.
Here we demonstrate a cost effective and scalable microbial ecology sequencing platform using the Ion Torrent Personal Genome Machine (PGM). We assessed both PCR amplified 16S rRNA and shotgun metagenomic approaches and generated 100,000+ to 1,000,000+ reads using 'post-light' based sequencing technology within different sized semi-conductor chips. Further development of Golay barcoded Ion Tags allowed multiplex analyses of microbial communities with substantially reduced costs compared with platforms such as 454/GS-FLX. Using these protocols we assessed the bacterial and archaeal dynamics within covered anaerobic digesters used to treat piggery wastes. Analysis of these sequence data showed that these novel methanogenic waste treatment systems are dominated by bacterial taxa, in particular Clostridium, Synergistia and Bacteroides that were maintained as a stable community over extended time periods. Archaeal community dynamics were more stochastic with the key methanogenic taxa more difficult to resolve, principally due to the poor congruence seen between community structures generated either by nested PCR or metagenomic approaches for archaeal analyses. Our results show that for microbial community structure and function analyses, the PGM platform provides a low cost, scalable and high throughput solution for both Tag sequencing and metagenomic analyses.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号