首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6026篇
  免费   532篇
  国内免费   3篇
  6561篇
  2023年   42篇
  2022年   116篇
  2021年   225篇
  2020年   93篇
  2019年   127篇
  2018年   146篇
  2017年   106篇
  2016年   212篇
  2015年   371篇
  2014年   332篇
  2013年   416篇
  2012年   577篇
  2011年   503篇
  2010年   321篇
  2009年   244篇
  2008年   357篇
  2007年   366篇
  2006年   321篇
  2005年   285篇
  2004年   290篇
  2003年   239篇
  2002年   216篇
  2001年   52篇
  2000年   31篇
  1999年   38篇
  1998年   58篇
  1997年   28篇
  1996年   26篇
  1995年   20篇
  1994年   31篇
  1993年   29篇
  1992年   19篇
  1991年   20篇
  1990年   17篇
  1989年   16篇
  1988年   12篇
  1987年   9篇
  1986年   12篇
  1985年   14篇
  1984年   19篇
  1983年   18篇
  1982年   14篇
  1981年   8篇
  1980年   13篇
  1979年   7篇
  1978年   13篇
  1977年   12篇
  1976年   10篇
  1975年   10篇
  1971年   12篇
排序方式: 共有6561条查询结果,搜索用时 9 毫秒
931.
Kays AM  Borkovich KA 《Genetics》2004,166(3):1229-1240
Heterotrimeric G alpha proteins play a critical role in regulating growth and differentiation in filamentous fungi. No systematic analysis of functional relationships between subunits has been investigated. This study explores the relative contributions of Neurospora crassa G alpha subunits, gna-1, gna-2, and gna-3, in directing development by analyzing strains deleted for various combinations of these genes. Although viable, mutants lacking all G alpha subunits or gna-1 and gna-3 are severely restricted in apical growth, forming small colonies. These strains form little aerial hyphae during asexual development on solid medium and exhibit inappropriate sporulation in submerged cultures. Similar to all strains carrying the Delta gna-1 mutation, these mutants are female sterile. Defects attributed to gna-2 are observed only in conjunction with the loss of gna-1 or gna-3, suggesting a minor role for this G alpha in N. crassa biology. Results from analysis of adenylyl cyclase and epistatic studies with the cAMP-dependent protein kinase regulatory subunit (mcb) indicate separate functions for GNA-1 and GNA-3 in cAMP metabolism and additional cAMP-independent roles for GNA-1. These studies indicate that although G alpha subunits are not essential for viability in filamentous fungi, their loss results in an organism that cannot effectively forage for nutrients or undergo asexual or sexual reproduction.  相似文献   
932.
Toll-like receptor 4 (TLR4) and TLR2 agonists from bacterial origin require acylated saturated fatty acids in their molecules. Previously, we reported that TLR4 activation is reciprocally modulated by saturated and polyunsaturated fatty acids in macrophages. However, it is not known whether fatty acids can modulate the activation of TLR2 or other TLRs for which respective ligands do not require acylated fatty acids. A saturated fatty acid, lauric acid, induced NFkappaB activation when TLR2 was co-transfected with TLR1 or TLR6 in 293T cells, but not when TLR1, 2, 3, 5, 6, or 9 was transfected individually. An n-3 polyunsaturated fatty acid (docosahexaenoic acid (DHA)) suppressed NFkappaB activation and cyclooxygenase-2 expression induced by the agonist for TLR2, 3, 4, 5, or 9 in a macrophage cell line (RAW264.7). Because dimerization is considered one of the potential mechanisms for the activation of TLR2 and TLR4, we determined whether the fatty acids modulate the dimerization. However, neither lauric acid nor DHA affected the heterodimerization of TLR2 with TLR6 as well as the homodimerization of TLR4 as determined by co-immunoprecipitation assays in 293T cells in which these TLRs were transiently overexpressed. Together, these results demonstrate that lauric acid activates TLR2 dimers as well as TLR4 for which respective bacterial agonists require acylated fatty acids, whereas DHA inhibits the activation of all TLRs tested. Thus, responsiveness of different cell types and tissues to saturated fatty acids would depend on the expression of TLR4 or TLR2 with either TLR1 or TLR6. These results also suggest that inflammatory responses induced by the activation of TLRs can be differentially modulated by types of dietary fatty acids.  相似文献   
933.
There is an urgent need to understand the mechanism of activation of the frontline anti-tuberculosis drug isoniazid by the Mycobacterium tuberculosis catalase-peroxidase. To address this, a combination of NMR spectroscopic, biochemical, and computational methods have been used to obtain a model of the frontline anti-tuberculosis drug isoniazid bound to the active site of the class III peroxidase, horseradish peroxidase C. This information has been used in combination with the new crystal structure of the M. tuberculosis catalase-peroxidase to predict the mode of INH binding across the class I heme peroxidase family. An enzyme-catalyzed mechanism for INH activation is proposed that brings together structural, functional, and spectroscopic data from a variety of sources. Collectively, the information not only provides a molecular basis for understanding INH activation by the M. tuberculosis catalase-peroxidase but also establishes a new conceptual framework for testing hypotheses regarding the enzyme-catalyzed turnover of this compound in a number of heme peroxidases.  相似文献   
934.
Protein geranylgeranyltransferase type I (GGTase I) catalyzes the attachment of a geranylgeranyl lipid group near the carboxyl terminus of protein substrates. Unlike protein farnesyltransferase (FTase) and protein geranylgeranyltransferase type II, which require both Zn(II) and Mg(II) for maximal turnover, GGTase I turnover is dependent only on Zn(II). In FTase, the magnesium ion is coordinated by aspartate beta352 and the diphosphate of farnesyl diphosphate to stabilize the developing charge in the transition state (Pickett, J. S., Bowers, K. E., and Fierke, C. A. (2003) J. Biol. Chem. 278, 51243-51250). In GGTase I, lysine beta311 is substituted for this aspartate and is proposed to replace the catalytic function of Mg(II) (Taylor, J. S., Reid, T. S., Terry, K. L., Casey, P. J., and Beese, L. S. (2003) EMBO J. 22, 5963-5974). Here we demonstrate that the prenylation rate constant catalyzed by wild type GGTase I (k(chem) = 0.18 +/- 0.02 s(-1)) is not dependent on Mg(II), is approximately 20-fold slower than the maximal rate constant catalyzed by FTase, and has a single pKa of 6.4 +/- 0.1, likely reflecting deprotonation of the peptide thiol. Mutation of lysine beta311 in GGTase I to alanine (Kbeta311A) or aspartate (Kbeta311D) decreases the k(chem) in the absence of magnesium 9-41-fold without significantly affecting the binding affinity of either substrate. Furthermore, the geranylgeranylation rate constant is enhanced by the addition of Mg(II) for Kbeta311A and Kbeta311D GGTase I 2-5-fold compared with wild type GGTase I with K(Mg) of 140 +/- 10 mm and 6.4 +/- 0.8 mm, respectively. These results demonstrate that lysine beta311 of GGTase I partially replaces the catalytic function of Mg(II) observed in FTase.  相似文献   
935.
Resource limitation represents an important constraint on ecological communities, which restricts the total abundance, biomass, and community energy flux a given community can support. However, the exact relationship among these three measures of biological activity remains unclear. Here we use a simple framework that links abundance and biomass with an energetic constraint. Under constant energetic availability, it is expected that changes in abundance and biomass can result from shifts in the distribution of individual masses. We test these predictions using long-term data from a desert rodent community. Total energy use for the community has not changed directionally for 25 years, but species composition has. As a result, the average body size has decreased by almost 50%, and average abundance has doubled. These results lend support to the idea of resource limitation on desert rodent communities and demonstrate that systems are able to maintain community energy flux in the face of environmental change, through changes in composition and structure.  相似文献   
936.
The Regal Fritillary butterfly, Speyeria idalia (Drury) (Lepidoptera: Nymphalidae), has been described as a high gene flow species. Supporting this assertion, previous studies in the Great Plains, where it is still relatively widespread, have found evidence of gene flow across hundreds of kilometers. Using mitochondrial and microsatellite loci, we examined the spatial genetic structure of a very isolated Pennsylvania population of these butterflies that occupies three separate meadows located within ten kilometers of each other. We found restricted gene flow and a distinct structure, with each meadow having a unique genetic signature. Our findings indicate that even a species that normally exhibits high gene flow may show fine-scale genetic subdivision in areas where populations have been largely extirpated.Authors contributed equally.  相似文献   
937.
A glycomic approach is developed to identify oligosaccharide markers for ovarian cancer by rapidly profiling globally released oligosaccharides. Glycoproteins shed by cancer cells are found in the supernatant (or conditioned media) of cultured cells. In this approach, shed glycoproteins are profiled for their oligosaccharide content using beta-elimination conditions. Changes in glycosylation are monitored by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS). Because shed glycoproteins would also be found in serum, similar glycan profiling was performed to observe potential oligosaccharide markers. Oligosaccharide profiling data on a limited set of patient and normal serum samples were studied to determine potential glycan markers in ovarian cancer. We were able to demonstrate the presence of at least 15 unique serum glycan markers in all patients but absent in normal individuals. To determine the structure of the glycan biomarkers, a number of the ions were isolated and further analyzed using infrared multiphoton dissociation (IRMPD). One major advantage of this approach is that glycans are examined directly from patient sera without the need to obtain cancer biopsy specimens or to purify glycosylated proteins from these specimens.  相似文献   
938.
BACKGROUND: This report focuses on the common protocol developed by the Muscular Dystrophy Surveillance Tracking and Research Network (MD STARnet) for population-based surveillance of Duchenne and Becker muscular dystrophy (DBMD) among 4 states (Arizona, Colorado, Iowa, and New York). METHODS: The network sites have developed a case definition and surveillance protocol along with software applications for medical record abstraction, clinical review, and pooled data. Neuromuscular specialists at each site review the pooled data to determine if a case meets the case criteria. Sources of potential cases of DBMD include neuromuscular specialty clinics, service sites for children with special healthcare needs, and hospital discharge databases. Each site also adheres to a common information assurance protocol. RESULTS: A population-based surveillance system for DBMD was created and implemented in participating states. CONCLUSIONS: The development and implementation of the population-based system will allow for the collection of information that is intended to provide a greater understanding of DBMD prevalence and health outcomes.  相似文献   
939.
Pathological movement patterns like crouch gait are characterized by abnormal kinematics and muscle activations that alter how muscles support the body weight during walking. Individual muscles are often the target of interventions to improve crouch gait, yet the roles of individual muscles during crouch gait remain unknown. The goal of this study was to examine how muscles contribute to mass center accelerations and joint angular accelerations during single-limb stance in crouch gait, and compare these contributions to unimpaired gait. Subject-specific dynamic simulations were created for ten children who walked in a mild crouch gait and had no previous surgeries. The simulations were analyzed to determine the acceleration of the mass center and angular accelerations of the hip, knee, and ankle generated by individual muscles. The results of this analysis indicate that children walking in crouch gait have less passive skeletal support of body weight and utilize substantially higher muscle forces to walk than unimpaired individuals. Crouch gait relies on the same muscles as unimpaired gait to accelerate the mass center upward, including the soleus, vasti, gastrocnemius, gluteus medius, rectus femoris, and gluteus maximus. However, during crouch gait, these muscles are active throughout single-limb stance, in contrast to the modulation of muscle forces seen during single-limb stance in an unimpaired gait. Subjects walking in crouch gait rely more on proximal muscles, including the gluteus medius and hamstrings, to accelerate the mass center forward during single-limb stance than subjects with an unimpaired gait.  相似文献   
940.
Kainate receptors are widely expressed in the brain, and are present at pre- and postsynaptic sites where they play a prominent role in synaptic plasticity and the regulation of network activity. Within individual neurons, kainate receptors of different subunit compositions are targeted to various locations where they serve distinct functional roles. Despite this complex targeting, relatively little is known about the molecular mechanisms regulating kainate receptor subunit trafficking. Here we investigate the role of phosphorylation in the trafficking of the GluR6 kainate receptor subunit. We identify two specific residues on the GluR6 C terminus, Ser846 and Ser868, which are phosphorylated by protein kinase C (PKC) and dramatically regulate GluR6 surface expression. By using GluR6 containing phosphomimetic and nonphosphorylatable mutations for these sites expressed in heterologous cells or in neurons lacking endogenous GluR6, we show that phosphorylation of Ser846 or Ser868 regulates receptor trafficking through the biosynthetic pathway. Additionally, Ser846 phosphorylation dynamically regulates endocytosis of GluR6 at the plasma membrane. Our findings thus demonstrate that phosphorylation of PKC sites on GluR6 regulates surface expression of GluR6 at distinct intracellular trafficking pathways, providing potential molecular mechanisms for the PKC-dependent regulation of synaptic kainate receptor function observed during various forms of synaptic plasticity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号