首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6156篇
  免费   537篇
  国内免费   3篇
  6696篇
  2023年   42篇
  2022年   119篇
  2021年   226篇
  2020年   95篇
  2019年   130篇
  2018年   149篇
  2017年   106篇
  2016年   213篇
  2015年   371篇
  2014年   333篇
  2013年   419篇
  2012年   580篇
  2011年   516篇
  2010年   325篇
  2009年   252篇
  2008年   362篇
  2007年   373篇
  2006年   325篇
  2005年   287篇
  2004年   297篇
  2003年   247篇
  2002年   224篇
  2001年   47篇
  2000年   38篇
  1999年   40篇
  1998年   57篇
  1997年   30篇
  1996年   27篇
  1995年   19篇
  1994年   33篇
  1993年   31篇
  1992年   27篇
  1991年   30篇
  1990年   21篇
  1989年   18篇
  1988年   15篇
  1987年   13篇
  1986年   12篇
  1985年   17篇
  1984年   20篇
  1983年   16篇
  1982年   15篇
  1981年   9篇
  1980年   14篇
  1979年   8篇
  1978年   15篇
  1977年   13篇
  1976年   10篇
  1972年   7篇
  1971年   14篇
排序方式: 共有6696条查询结果,搜索用时 15 毫秒
41.
42.
Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned β-galactoglucomannan (β-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of β-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that β-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis β-GGM synthesis mutants show no obvious growth defects, genetic crosses between β-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of β-GGM and XyG in PCWs.

Patterned β-GGM resembles xyloglucan in structure, biosynthesis, and function.

In a Nutshell Background: Plant primary cell walls (PCWs) need to be rigid enough to define the plant shape and yet allow cell expansion at the same time. Plants achieve this by forming a complex network that is composed of cellulose and various non-cellulosic polysaccharides, such as hemicelluloses. Cell walls differ in the abundance of the various hemicelluloses, and their roles are poorly understood. In contrast to xyloglucan (XyG), which has been the most extensively studied hemicellulose in the PCWs, neither the structure nor functions of glucomannan has been resolved. Question: Are the functions of the glucomannan in PCWs distinct from the roles of the most abundant hemicellulose, XyG? Findings: We discovered a type of glucomannan in eudicot PCWs, which we named β-galactoglucomannan (β-GGM) because of its distinctive structures: disaccharide side chains of β-Gal-α-Gal and alternating repeats of Glc-Man in the backbone. Similarity to XyG in structure and biosynthesis led us to identify a β-galactosyltransferase for the β-GGM biosynthesis. We found that β-GGM contributed to normal cell expansion, in a way that was masked by the presence of XyG. These results suggest related functions of β-GGM to XyG, highlighting the necessity to consider the contribution of multiple hemicelluloses in the functional study of plant cell walls. Next steps: We would like to know how β-GGM binds to cellulose, and how this differs to cellulose binding of XyG. Investigation of the precise arrangements and interactions of cellulose and hemicelluloses including β-GGM and XyG will help further understanding of the enigmatic functions of hemicelluloses.  相似文献   
43.
Cozumel Island in the Mexican Caribbean is inhabited by four carnivores, of which two, the Cozumel coati Nasua nelsoni and pygmy raccoon Procyon pygmaeus, are endemic species. The taxonomic status of a third carnivore, a dwarf gray fox Urocyon cinereoargenteus, is undetermined, but may deserve subspecific or species-level recognition. The fourth species, the kinkajou (Potos flavus), may be a recent introduction. We review the status of these carnivores, report our field observations and results of line transect and trapping efforts, discuss current threats to these taxa, and make recommendations for their conservation. A population density of 0.43 ± 0.27 coatis/km2, and a total island population size of 150 ± 95 individuals, was estimated from 386 km of line transects in 1994–1995. Intensive trapping efforts (1479 trap-nights) in 2001 at multiple localities were unsuccessful. Pygmy raccoons were observed in the mangrove and coastal wetland areas of the island and in 2001 we captured 11 individuals with the same sampling efforts as for coatis (8.8 raccoons/1000 trap-nights). The gray fox is also apparently very rare on the island. While a few observations of the animals have been made (1984, 1994 and 2001), no animals were seen along transects and none were trapped. The primary threats to the persistence of these taxa include introduced congeners, introduced predators, parasite and disease spill-over from exotic animals, habitat fragmentation, hunting and collection as pets, and hurricanes. We suggest that the Cozumel coati, pygmy raccoon, and the Cozumel population of the gray fox be considered as Critically Endangered according to the IUCN classification system. Current conservation actions focusing on Cozumel carnivores are extremely limited. We recommend eradication of introduced species, maintenance of habitat connectivity, ex situ conservation programs, explicit public policies on land-use and sustainable development, public awareness campaigns, and continuous scientific research and monitoring.  相似文献   
44.
45.
In this review we describe the principles, protocols, and applications of two commercially available SNP genotyping platforms, the TaqMan SNP Genotyping Assays and the SNPlex Genotyping System. Combined, these two technologies meet the requirements of multiple SNP applications in genetics research and pharmacogenetics. We also describe a set of SNP selection tools and validated assay resources which we developed to accelerate the cycle of experimentation on these platforms. Criteria for selecting the more appropriate of these two genotyping technologies are presented: the genetic architecture of the trait of interest, the throughput required, and the number of SNPs and samples needed for a successful study. Overall, the TaqMan assay format is suitable for low- to mid-throughput applications in which a high assay conversion rate, simple assay workflow, and low cost of automation are desirable. The SNPlex Genotyping System, on the other hand, is well suited for SNP applications in which throughput and cost-efficiency are essential, e.g., applications requiring either the testing of large numbers of SNPs and samples, or the flexibility to select various SNP subsets.  相似文献   
46.
The objective was to improve the protocol that was used to obtain the first reported piglets from transferred vitrified and warmed zona-intact blastocysts. Blastocysts were collected from superovulated sows and gilts, centrifuged to polarize lipid, vitrified, warmed and cultured for 24h or transferred immediately. Removing the zona pellucida after warming increased the number of cells in the surviving blastocysts (zona-free 60.8+/-4.3, zona-intact 39.1+/-2.8; P<0.05). Thinning the zona pellucida produced similar results to zona removal. Changing the basal medium of the vitrification and warming solutions from modified PBS to phosphate buffered NCSU-23 increased the number of cells (44.7+/-2.2 versus 56.0+/-3.9, respectively; P<0.05). Reducing the plunge temperature of the liquid nitrogen from -196 degrees C to less than -204 degrees C improved the embryo survival rate (61.9% versus 82.9%, respectively; P<0.05). These modifications were incorporated into the vitrification protocol that was used to vitrify and warm 105 blastocysts (that were subsequently transferred into four recipients). Three recipients became pregnant, farrowing three litters (average litter size, 5.3; 18.8% embryo survival in farrowing sows). Changing the warming protocol to using sucrose rather than ethylene glycol resulted in a trend towards improved embryo survival (73.5% versus 91.2%) but this was not statistically significant. Incorporating this modification, 203 blastocysts were vitrified, warmed and transferred into seven recipients. Five became pregnant and 36 fetuses were recovered (average litter size 7.2; 24.8% embryo survival in pregnant sows) at Day 40 of pregnancy. In conclusion, changes made to the vitrification protocol improved pregnancy rate and in vivo embryo survival compared to an earlier study using the original protocol.  相似文献   
47.
In the mammalian central nervous system, the majority of fast excitatory synaptic transmission is mediated by glutamate acting on AMPA-type ionotropic glutamate receptors. The abundance of AMPA receptors at the synapse can be modulated through receptor trafficking, which dynamically regulates many fundamental brain functions, including learning and memory. Reversible posttranslational modifications, including phosphorylation, palmitoylation and ubiquitination of AMPA receptor subunits are important regulatory mechanisms for controlling synaptic AMPA receptor expression and function. In this review, we highlight recent advances in the study of AMPA receptor posttranslational modifications and discuss how these modifications regulate AMPA receptor trafficking and function at synapses.  相似文献   
48.
A prevailing paradigm in forest ecology is that wood‐boring beetles facilitate wood decay and carbon cycling, but empirical tests have yielded mixed results. We experimentally determined the effects of wood borers on fungal community assembly and wood decay within pine trunks in the southeastern United States. Pine trunks were made either beetle‐accessible or inaccessible. Fungal communities were compared using culturing and high‐throughput amplicon sequencing (HTAS) of DNA and RNA. Prior to beetle infestation, living pines had diverse fungal endophyte communities. Endophytes were displaced by beetle‐associated fungi in beetle‐accessible trees, whereas some endophytes persisted as saprotrophs in beetle‐excluded trees. Beetles increased fungal diversity several fold. Over forty taxa of Ascomycota were significantly associated with beetles, but beetles were not consistently associated with any known wood‐decaying fungi. Instead, increasing ambrosia beetle infestations caused reduced decay, consistent with previous in vitro experiments that showed beetle‐associated fungi reduce decay rates by competing with decay fungi. No effect of bark‐inhabiting beetles on decay was detected. Platypodines carried significantly more fungal taxa than scolytines. Molecular results were validated by synthetic and biological mock communities and were consistent across methodologies. RNA sequencing confirmed that beetle‐associated fungi were biologically active in the wood. Metabarcode sequencing of the LSU/28S marker recovered important fungal symbionts that were missed by ITS2, though community‐level effects were similar between markers. In contrast to the current paradigm, our results indicate ambrosia beetles introduce diverse fungal communities that do not extensively decay wood, but instead reduce decay rates by competing with wood decay fungi.  相似文献   
49.
Emotion and reward have been proposed to be closely linked to conscious experience, but empirical data are lacking. The anterior cingulate cortex (ACC) plays a central role in the hedonic dimension of conscious experience; thus potentially a key region in interactions between emotion and consciousness. Here we tested the impact of emotion on conscious experience, and directly investigated the role of the ACC. We used a masked paradigm that measures conscious reportability in terms of subjective confidence and objective accuracy in identifying the briefly presented stimulus in a forced-choice test. By manipulating the emotional valence (positive, neutral, negative) and the presentation time (16 ms, 32 ms, 80 ms) we measured the impact of these variables on conscious and subliminal (i.e. below threshold) processing. First, we tested normal participants using face and word stimuli. Results showed that participants were more confident and accurate when consciously seeing happy versus sad/neutral faces and words. When stimuli were presented subliminally, we found no effect of emotion. To investigate the neural basis of this impact of emotion, we recorded local field potentials (LFPs) directly in the ACC in a chronic pain patient. Behavioural findings were replicated: the patient was more confident and accurate when (consciously) seeing happy versus sad faces, while no effect was seen in subliminal trials. Mirroring behavioural findings, we found significant differences in the LFPs after around 500 ms (lasting 30 ms) in conscious trials between happy and sad faces, while no effect was found in subliminal trials. We thus demonstrate a striking impact of emotion on conscious experience, with positive emotional stimuli enhancing conscious reportability. In line with previous studies, the data indicate a key role of the ACC, but goes beyond earlier work by providing the first direct evidence of interaction between emotion and conscious experience in the human ACC.  相似文献   
50.
Evapotranspiraton (ET) is the second largest term in the terrestrial water budget after precipitation, and ET is expected to increase with global warming. ET studies are relevant to the plant sciences because over 80% of terrestrial ET is due to transpiration by plants. Remote sensing is the only feasible means for projecting ET over large landscape units. In the past decade or so, new ground and remote sensing tools have dramatically increased our ability to measure ET at the plot scale and to scale it over larger regions. Moisture flux towers and micrometeorological stations have been deployed in numerous natural and agricultural biomes and provide continuous measurements of actual ET or potential ET with an accuracy or uncertainty of 10–30%. These measurements can be scaled to larger landscape units using remotely-sensed vegetation indices (VIs), Land Surface Temperature (LST), and other satellite data. Two types of methods have been developed. Empirical methods use time-series VIs and micrometeorological data to project ET measured on the ground to larger landscape units. Physically-based methods use remote sensing data to determine the components of the surface energy balance, including latent heat flux, which determines ET. Errors in predicting ET by both types of methods are within the error bounds of the flux towers by which they are calibrated or validated. However, the error bounds need to be reduced to 10% or less for applications that require precise wide-area ET estimates. The high fidelity between ET and VIs over agricultural fields and natural ecosystems where precise ground estimates of ET are available suggests that this might be an achievable goal if ground methods for measuring ET continue to improve.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号