首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   13篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   10篇
  2014年   11篇
  2013年   11篇
  2012年   22篇
  2011年   7篇
  2010年   16篇
  2009年   9篇
  2008年   7篇
  2007年   11篇
  2006年   6篇
  2005年   6篇
  2004年   9篇
  2003年   12篇
  2002年   9篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1990年   1篇
  1987年   2篇
  1986年   1篇
  1983年   2篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
131.
Csn3 (Cops3) maps to the mouse chromosome 11 region syntenic to the common deletion interval for the Smith-Magenis syndrome, a contiguous gene deletion syndrome. It encodes the third subunit of an eight-subunit protein complex, the COP9 signalosome (CSN), which controls a wide variety of molecules of different functions. Mutants of this complex caused lethality at early development of both plants and Drosophila melanogaster. CSN function in vivo in mammals is unknown. We disrupted the murine Csn3 gene in three independent ways with insertional vectors, including constructing a approximately 3-Mb inversion chromosome. The heterozygous mice appeared normal, although the protein level was reduced. Csn3(-/-) embryos arrested after 5.5 days postcoitum (dpc) and resorbed by 8.5 dpc. Mutant embryos form an abnormal egg cylinder which does not gastrulate. They have reduced numbers of epiblast cells, mainly due to increased cell death. In the Csn3(-/-) mice, subunit 8 of the COP9 complex was not detected by immunohistochemical techniques, suggesting that the absence of Csn3 may disrupt the entire COP9 complex. Therefore, Csn3 is important for maintaining the integrity of the COP9 signalosome and is crucial to maintain the survival of epiblast cells and thus the development of the postimplantation embryo in mice.  相似文献   
132.
Contiguous gene syndromes (CGS) are a group of disorders associated with chromosomal rearrangements of which the phenotype is thought to result from altered copy numbers of physically linked dosage-sensitive genes. Smith-Magenis syndrome (SMS) is a CGS associated with a deletion within band p11.2 of chromosome 17. Recently, patients harboring the predicted reciprocal duplication product [dup(17)(p11.2p11.2)] have been described as having a relatively mild phenotype. By chromosomal engineering, we created rearranged chromosomes carrying the deletion [Df(11)17] or duplication [Dp(11)17] of the syntenic region on mouse chromosome 11 that spans the genomic interval commonly deleted in SMS patients. Df(11)17/+ mice exhibit craniofacial abnormalities, seizures, marked obesity, and male-specific reduced fertility. Dp(11)17/+ animals are underweight and do not have seizures, craniofacial abnormalities, or reduced fertility. Examination of Df(11)17/Dp(11)17 animals suggests that most of the observed phenotypes result from gene dosage effects. Our murine models represent a powerful tool to analyze the consequences of gene dosage imbalance in this genomic interval and to investigate the molecular genetic bases of both SMS and dup(17)(p11.2p11.2).  相似文献   
133.
Familial Mediterranean Fever (FMF) is an autosomal recessive disease of high prevalence within Mediterranean countries and particularly common in four ethnic populations: Arabs, non-Ashkenazi Jews, Armenians, and Turks. The responsible gene MEFV has been assigned to chromosome 16p13.3. Our aim was to establish the frequencies of the most common mutations in Greek-Cypriots. We found that 1 in 25 is a carrier of one of three mutations. V726A, M694V, and F479L. In 68 Grek-Cypriot FMF chromosomes analyzed, we found V726A (25%), F479L (20.6%), M694V (17.6%), and others (36.8%). Mutation F479L, relatively common in this population, is very rare elsewhere. Our study indicates that FMF is not a rare condition in Cyprus and that, because of the significant morbidity associated with this disorder, which is often diagnosed only after unnecessary surgeries, a newborn screening program to detect affected in this population may be warranted.  相似文献   
134.
135.
The study of environmental impact on feeding preferences of omnivores is a rapidly growing field. Here, we show that the criticism put forward in a comment on our original study is largely unfounded.  相似文献   
136.
137.
A restricted diffusion model is constructed and solved in order to study the permeability of large adsorbate molecules in the pores of affinity chromatography media, when the adsorbate molecules are adsorbed onto immobilized ligands. The combined effects of steric hindrance at the entrance to the pores and frictional resistance within the pores, as well as the effects of pore size distribution, pore connectivity of the adsorbent, molecular size of adsorbate and ligand, and the fractional saturation of adsorption sites (ligands), are considered. Affinity adsorbents with dilute and high ligand concentrations are examined, and the permeability of the adsorbate in porous networks of connectivity nT is studied by means of effective medium approximation (EMA) numerical solutions. As expected, the permeability of the adsorbate decreases as the size of the adsorbate and/or ligand molecule increases. The permeability also decreases when the fractional saturation of the ligands increases, as well as when the pore connectivity of the network decreases. The dependence of the permeability on the pore connectivity tends to be less marked in adsorbents with concentrated ligand than in porous media with dilute ligand concentration. The conditions are also presented for which the percolation threshold is attained in a number of different systems. The restricted diffusion model and results of this work may be of importance in studies involving the modeling, prediction of the dynamic behavior, design, and control of affinity chromatography (biospecific adsorption) systems employing porous adsorbents. The theoretical results may also have important implications in the selection of a ligand as well as in the selection and construction of an affinity porous matrix, so that the adsorbate of interest can be efficiently separated from a given solution. Furthermore, with appropriate modifications this restricted diffusion model may be used in studies involving the immobilization of ligands or enzymes in porous solids.  相似文献   
138.
Vegetation effects on arthropods are well recognized, but it is unclear how different vegetation attributes might influence arthropod assemblages across mixed-agricultural landscapes. Understanding how plant communities influence arthropods under different habitat and seasonal contexts can identify vegetation management options for arthropod biodiversity. We examined relationships between vegetation structure, plant species richness and plant species composition, and the diversity and composition of beetles in different habitats and time periods. We asked: (1) What is the relative importance of plant species richness, vegetation structure and plant composition in explaining beetle species richness, activity-density and composition? (2) How do plant-beetle relationships vary between different habitats over time? We sampled beetles using pitfall traps and surveyed vegetation in three habitats (woodland, farmland, their edges) during peak crop growth in spring and post-harvest in summer. Plant composition better predicted beetle composition than vegetation structure. Both plant richness and vegetation structure significantly and positively affected beetle activity-density. The influence of all vegetation attributes often varied in strength and direction between habitats and seasons for all trophic groups. The variable nature of plant-beetle relationships suggests that vegetation management could be targeted at specific habitats and time periods to maximize positive outcomes for beetle diversity. In particular, management that promotes plant richness at edges, and promotes herbaceous cover during summer, can support beetle diversity. Conserving ground cover in all habitats may improve activity-density of all beetle trophic groups. The impacts of existing weed control strategies in Australian crop margins on arthropod biodiversity require further study.  相似文献   
139.
Negative relationships between species richness and elevation are common and attributed to changes in single environmental properties associated to elevation, such as temperature and habitat area. However, research has lacked taxonomic breadth and comprehensive elevation studies that consider multiple groups from different trophic levels are rare. We thus analysed 24 groups of plants, arthropods, and microorganisms grouped into six trophic guilds (predators, detritivores, herbivores, plants, bacteria and fungi) along a relatively short elevational gradient (~600 m) in a subtropical forest in south‐east China. The total species richness of all organisms was not related to elevation, nor was the richness of plants, herbivores or microorganisms. However, species richness and abundance in two major trophic guilds of arthropods changed with elevation, which was mediated by changes in elevation‐associated habitat properties. Specifically, deadwood mass increased with elevation, which increased detritivore richness indirectly via detritivore abundance, thus supporting the ‘more individuals hypothesis’. In contrast, lower predator richness at higher elevations was directly related to lower mean temperatures, which had no effect on abundance. Our study demonstrates that even along relatively short gradients, elevation can have strong direct and abundance‐mediated effects on species richness, but with effects varying from positive to negative signs depending on local resource availability and the characteristics of groups or trophic guilds. If elevation positively influences local environmental properties that benefit a given group, richness can increase towards higher elevations. Thus, the effect of global change in mountainous regions should be evaluated within the local environmental context using multi‐taxon approaches.  相似文献   
140.
Development of appropriate dendritic arbors is crucial for neuronal information transfer. We show, using seizure-related gene 6 (sez-6) null mutant mice, that Sez-6 is required for normal dendritic arborization of cortical neurons. Deep-layer pyramidal neurons in the somatosensory cortex of sez-6 null mice exhibit an excess of short dendrites, and cultured cortical neurons lacking Sez-6 display excessive neurite branching. Overexpression of individual Sez-6 isoforms in knockout neurons reveals opposing actions of membrane-bound and secreted Sez-6 proteins, with membrane-bound Sez-6 exerting an antibranching effect under both basal and depolarizing conditions. Layer V pyramidal neurons in knockout brain slices show reduced excitatory postsynaptic responses and a reduced dendritic spine density, reflected by diminished punctate staining for postsynaptic density 95 (PSD-95). In behavioral tests, the sez-6 null mice display specific exploratory, motor, and cognitive deficits. In conclusion, cell-surface protein complexes involving Sez-6 help to sculpt the dendritic arbor, in turn enhancing synaptic connectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号