首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1826篇
  免费   221篇
  2022年   16篇
  2021年   59篇
  2020年   22篇
  2019年   33篇
  2018年   38篇
  2017年   42篇
  2016年   47篇
  2015年   80篇
  2014年   81篇
  2013年   84篇
  2012年   107篇
  2011年   117篇
  2010年   67篇
  2009年   81篇
  2008年   96篇
  2007年   87篇
  2006年   79篇
  2005年   46篇
  2004年   65篇
  2003年   63篇
  2002年   42篇
  2001年   44篇
  2000年   28篇
  1999年   24篇
  1998年   19篇
  1997年   20篇
  1996年   16篇
  1995年   11篇
  1994年   16篇
  1992年   25篇
  1991年   18篇
  1990年   20篇
  1989年   19篇
  1988年   31篇
  1987年   14篇
  1986年   22篇
  1985年   25篇
  1984年   22篇
  1983年   17篇
  1981年   15篇
  1980年   12篇
  1979年   19篇
  1978年   14篇
  1977年   20篇
  1976年   11篇
  1974年   17篇
  1972年   10篇
  1970年   10篇
  1969年   11篇
  1968年   13篇
排序方式: 共有2047条查询结果,搜索用时 15 毫秒
101.
Although ecologists have documented the effects of nitrogen enrichment on productivity, diversity and species composition, we know little about the relative importance of the mechanisms driving these effects. We propose that distinct aspects of environmental change associated with N enrichment (resource limitation, asymmetric competition, and interactions with soil microbes) drive different aspects of plant response. We test this in greenhouse mesocosms, experimentally manipulating each factor across three ecosystems: tallgrass prairie, alpine tundra and desert grassland. We found that resource limitation controlled productivity responses to N enrichment in all systems. Asymmetric competition was responsible for diversity declines in two systems. Plant community composition was impacted by both asymmetric competition and altered soil microbes, with some contributions from resource limitation. Results suggest there may be generality in the mechanisms of plant community change with N enrichment. Understanding these links can help us better predict N response across a wide range of ecosystems.  相似文献   
102.
Physiological variation among and within species is thought to play a key role in determining distribution patterns across environmental gradients. We tested inter‐ and intraspecific variation in cold and heat tolerances for three grasshopper species (genus Kosciuscola) with overlapping elevation distributions, across their respective ranges in the Australian mountains. Of the three cold tolerance traits measured, the critical thermal minimum was the only trait to vary among species, with greater cold tolerance associated with a distribution extending to a higher elevation. Cold tolerance limits were regularly exceeded in exposed microhabitats, suggesting a role for cold adaptation in structuring species distribution patterns. In contrast to cold tolerance, heat tolerance variation was primarily partitioned within species. For two species, populations from treeless alpine habitat were more heat tolerant than their lower‐elevation counterparts, supporting recent models that suggest greater exposure to temperature extremes at higher elevations. These contrasting patterns of physiological variation among and within species emphasise the importance of considering variation within species when attempting to understand how species distributions are affected by thermal extremes.  相似文献   
103.
Biomechanics and Modeling in Mechanobiology - Many computer vision algorithms have been presented to track surface deformations, but few have provided a direct comparison of measurements with other...  相似文献   
104.
The advancement of spring and the differential ability of organisms to respond to changes in plant phenology may lead to “phenological mismatches” as a result of climate change. One potential for considerable mismatch is between migratory birds and food availability in northern breeding ranges, and these mismatches may have consequences for ecosystem function. We conducted a three‐year experiment to examine the consequences for CO2 exchange of advanced spring green‐up and altered timing of grazing by migratory Pacific black brant in a coastal wetland in western Alaska. Experimental treatments represent the variation in green‐up and timing of peak grazing intensity that currently exists in the system. Delayed grazing resulted in greater net ecosystem exchange (NEE) and gross primary productivity (GPP), while early grazing reduced CO2 uptake with the potential of causing net ecosystem carbon (C) loss in late spring and early summer. Conversely, advancing the growing season only influenced ecosystem respiration (ER), resulting in a small increase in ER with no concomitant impact on GPP or NEE. The experimental treatment that represents the most likely future, with green‐up advancing more rapidly than arrival of migratory geese, results in NEE changing by 1.2 µmol m?2 s?1 toward a greater CO2 sink in spring and summer. Increased sink strength, however, may be mitigated by early arrival of migratory geese, which would reduce CO2 uptake. Importantly, while the direct effect of climate warming on phenology of green‐up has a minimal influence on NEE, the indirect effect of climate warming manifest through changes in the timing of peak grazing can have a significant impact on C balance in northern coastal wetlands. Furthermore, processes influencing the timing of goose migration in the winter range can significantly influence ecosystem function in summer habitats.  相似文献   
105.
Chromosomal inversions shape recombination landscapes, and species differing by inversions may exhibit reduced gene flow in these regions of the genome. Though single crossovers within inversions are not usually recovered from inversion heterozygotes, the recombination barrier imposed by inversions is nuanced by noncrossover gene conversion. Here, we provide a genomewide empirical analysis of gene conversion rates both within species and in species hybrids. We estimate that gene conversion occurs at a rate of 1 × 10–5 to 2.5 × 10–5 converted sites per bp per generation in experimental crosses within Drosophila pseudoobscura and between D. pseudoobscura and its naturally hybridizing sister species D. persimilis. This analysis is the first direct empirical assessment of gene conversion rates within inversions of a species hybrid. Our data show that gene conversion rates in interspecies hybrids are at least as high as within‐species estimates of gene conversion rates, and gene conversion occurs regularly within and around inverted regions of species hybrids, even near inversion breakpoints. We also found that several gene conversion events appeared to be mitotic rather than meiotic in origin. Finally, we observed that gene conversion rates are higher in regions of lower local sequence divergence, yet our observed gene conversion rates in more divergent inverted regions were at least as high as in less divergent collinear regions. Given our observed high rates of gene conversion despite the sequence differentiation between species, especially in inverted regions, gene conversion has the potential to reduce the efficacy of inversions as barriers to recombination over evolutionary time.  相似文献   
106.
Plant‐soil feedback (PSF) theory provides a powerful framework for understanding plant dynamics by integrating growth assays into predictions of whether soil communities stabilise plant–plant interactions. However, we lack a comprehensive view of the likelihood of feedback‐driven coexistence, partly because of a failure to analyse pairwise PSF, the metric directly linked to plant species coexistence. Here, we determine the relative importance of plant evolutionary history, traits, and environmental factors for coexistence through PSF using a meta‐analysis of 1038 pairwise PSF measures. Consistent with eco‐evolutionary predictions, feedback is more likely to mediate coexistence for pairs of plant species (1) associating with similar guilds of mycorrhizal fungi, (2) of increasing phylogenetic distance, and (3) interacting with native microbes. We also found evidence for a primary role of pathogens in feedback‐mediated coexistence. By combining results over several independent studies, our results confirm that PSF may play a key role in plant species coexistence, species invasion, and the phylogenetic diversification of plant communities.  相似文献   
107.
108.
Sackton KL  Buehner NA  Wolfner MF 《Fly》2007,1(4):222-227
The mitogen-activated protein kinases (MAPKs) play essential roles during oocyte maturation and egg activation and are also active in somatic cell cycle regulation in many animals. In clams, starfish, ascidians, mice, and frogs, the species-specific timing of MAPK activity during oocyte maturation and egg activation correlates with the different meiotic arrest points of these various organisms. Furthermore, MAPKs have been shown to regulate the meiotic cell cycle in marine invertebrates and vertebrates. The initial trigger for egg activation in insects is different from that of marine invertebrates and vertebrates, and it was not previously known whether changes in MAPK activity accompany egg activation in insects. To examine the regulation of MAPKs during Drosophila egg activation and early embryogenesis, we quantified the levels of phosphorylated (active) forms of ERK, p38 and JNK by western blotting with antibodies specific to the phospho-forms of these kinases. Levels of phospho-ERK, phospho-p38 and phospho-JNK are high in Drosophila oocytes. Upon egg activation, levels of all these phospho- (active) forms of MAPKs decrease. Fertilization is not required for this decrease, consistent with the independence of egg activation from fertilization in Drosophila. The decrease in levels of phospho-MAPK occurs normally in embryos laid by sterile females mutant in the egg activation genes cortex, sarah, and prage. We present a model in which the decrease in MAPK activity is an intermediate step in the pathway leading from the calcium signal that initiates egg activation to the downstream events of activation.  相似文献   
109.
Infection of mice by murine gammaherpesvirus 68 (MHV-68) is an excellent small-animal model of gammaherpesvirus pathogenesis in a natural host. We have carried out comparative studies of another herpesvirus, murine herpesvirus 76 (MHV-76), which was isolated at the same time as MHV-68 but from a different murid host, the yellow-necked mouse (Apodemus flavicollis). Molecular analyses revealed that the MHV-76 genome is essentially identical to that of MHV-68, except for deletion of 9,538 bp at the left end of the unique region. MHV-76 is therefore a deletion mutant that lacks four genes unique to MHV-68 (M1, M2, M3, and M4) as well as the eight viral tRNA-like genes. Replication of MHV-76 in cell culture was identical to that of MHV-68. However, following infection of mice, MHV-76 was cleared more rapidly from the lungs. In line with this, there was an increased inflammatory response in lungs with MHV-76. Splenomegaly was also significantly reduced following MHV-76 infection, and much less latent MHV-76 was detected in the spleen. Nevertheless, MHV-76 maintained long-term latency in the lungs and spleen. We utilized a cosmid containing the left end of the MHV-68 genome to reinsert the deleted sequence into MHV-76 by recombination in infected cells, and we isolated a rescuant virus designated MHV-76(cA8+)4 which was ostensibly genetically identical to MHV-68. The growth properties of the rescuant in infected mice were identical to those of MHV-68. These results demonstrate that genetic elements at the left end of the unique region of the MHV-68 genome play vital roles in host evasion and are critical to the development of splenic pathology.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号