首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   942篇
  免费   103篇
  1045篇
  2023年   6篇
  2022年   11篇
  2021年   49篇
  2020年   16篇
  2019年   23篇
  2018年   28篇
  2017年   24篇
  2016年   37篇
  2015年   55篇
  2014年   51篇
  2013年   54篇
  2012年   67篇
  2011年   75篇
  2010年   39篇
  2009年   53篇
  2008年   64篇
  2007年   49篇
  2006年   49篇
  2005年   31篇
  2004年   49篇
  2003年   41篇
  2002年   23篇
  2001年   10篇
  2000年   5篇
  1999年   7篇
  1998年   7篇
  1997年   8篇
  1996年   5篇
  1995年   3篇
  1992年   5篇
  1991年   3篇
  1989年   3篇
  1988年   5篇
  1985年   5篇
  1984年   4篇
  1981年   4篇
  1980年   4篇
  1965年   3篇
  1964年   3篇
  1962年   3篇
  1961年   4篇
  1960年   3篇
  1958年   5篇
  1957年   2篇
  1955年   2篇
  1953年   2篇
  1939年   2篇
  1938年   3篇
  1923年   2篇
  1915年   2篇
排序方式: 共有1045条查询结果,搜索用时 15 毫秒
961.
Genetic screens in Saccharomyces cerevisiae provide novel information about interacting genes and pathways. We screened for high-copy-number suppressors of a strain with the gene encoding the nuclear exosome component Rrp6p deleted, with either a traditional plate screen for suppressors of rrp6Delta temperature sensitivity or a novel microarray enhancer/suppressor screening (MES) strategy. MES combines DNA microarray technology with high-copy-number plasmid expression in liquid media. The plate screen and MES identified overlapping, but also different, suppressor genes. Only MES identified the novel mRNP protein Nab6p and the tRNA transporter Los1p, which could not have been identified in a traditional plate screen; both genes are toxic when overexpressed in rrp6Delta strains at 37 degrees C. Nab6p binds poly(A)+ RNA, and the functions of Nab6p and Los1p suggest that mRNA metabolism and/or protein synthesis are growth rate limiting in rrp6Delta strains. Microarray analyses of gene expression in rrp6Delta strains and a number of suppressor strains support this hypothesis.  相似文献   
962.
The impact of ash deposition levels on canopy arthropods was studied on the West Indian island of Montserrat, the site of an ongoing volcanic eruption since 1995. Many of the island's natural habitats have been buried by volcanic debris, and remaining forests regularly receive volcanic ash deposition. To test the effect of ash on canopy arthropods, four study sites were sampled over a 15-mo period. Arthropod samples were obtained using canopy fogging, and ash samples were taken from leaf surfaces. Volcanic ash has had a significant negative impact on canopy arthropod populations, but the decline is not shared equally by all taxa present, and total population variation is within the variance attributed to other aboitic and biotic factors. The affected populations do not differ greatly from those of the neighboring island of St. Kitts, which has not been subject to recent volcanic activity. This indicates that observed effects on Montserrat's arthropod fauna have a short-term acute response to recent ash deposition rather than a chronic depression caused by repeated exposure to ash over the last decade.  相似文献   
963.
964.
GABAA receptors, the major mediators of fast inhibitory neuronal transmission, are heteropentameric glycoproteins assembled from a panel of subunits, usually including α and β subunits with or without a γ2 subunit. The α1β2γ2 receptor is the most abundant GABAA receptor in brain. Co-expression of γ2 with α1 and β2 subunits causes conformational changes, increases GABAA receptor channel conductance, and prolongs channel open times. We reported previously that glycosylation of the three β2 subunit glycosylation sites, N32, N104 and N173, was important for α1β2 receptor channel gating. Here, we examined the hypothesis that steric effects or conformational changes caused by γ2 subunit co-expression alter the glycosylation of partnering β2 subunits. We found that co-expression of γ2 subunits hindered processing of β2 subunit N104 N-glycans in HEK293T cells. This γ2 subunit-dependent effect was strong enough that a decrease of γ2 subunit expression in heterozygous GABRG2 knockout (γ2+/?) mice led to appreciable changes in the endoglycosidase H digestion pattern of neuronal β2 subunits. Interestingly, as measured by flow cytometry, γ2 subunit surface levels were decreased by mutating each of the β2 subunit glycosylation sites. The β2 subunit mutation N104Q also decreased GABA potency to evoke macroscopic currents and reduced conductance, mean open time and open probability of single channel currents. Collectively, our data suggested that γ2 subunits interacted with β2 subunit N-glycans and/or subdomains containing the glycosylation sites, and that γ2 subunit co-expression-dependent alterations in the processing of the β2 subunit N104 N-glycans were involved in altering the function of surface GABAA receptors.  相似文献   
965.
MID1 catalyzes the ubiquitination of the protein alpha4 and the catalytic subunit of protein phosphatase 2A. Mutations within the MID1 Bbox1 domain are associated with X-linked Opitz G syndrome (XLOS). Our functional assays have shown that mutations of Ala130 to Val or Thr, Cys142 to Ser and Cys145 to Thr completely disrupt the polyubiquitination of alpha4. Using NMR spectroscopy, we characterize the effect of these mutations on the tertiary structure of the Bbox1 domain by itself and in tandem with the Bbox2 domain. The mutation of either Cys142 or Cys145, each of which is involved in coordinating one of the two zinc ions, results in the collapse of signal dispersion in the HSQC spectrum of the Bbox1 domain indicating that the mutant protein structure is unfolded. Each mutation caused the coordination of both zinc ions, which are ∼13 Å apart, to be lost. Although Ala130 is not involved in the coordination of a zinc ion, the Ala130Thr mutant Bbox1 domain yields a poorly dispersed HSQC spectrum similar to those of the Cys142Ser and Cys145Thr mutants. Interestingly, neither cysteine mutation affects the structure of the adjacent Bbox2 domain when the two Bbox domains are engineered in their native tandem Bbox1-Bbox2 protein construct. Dynamic light scattering measurements suggest that the mutant Bbox1 domain has an increased propensity to form aggregates compared to the wild type Bbox1 domain. These studies provide insight into the mechanism by which mutations observed in XLOS affect the structure and function of the MID1 Bbox1 domain.  相似文献   
966.
967.
968.
The NS5B RNA-dependent RNA polymerase encoded by hepatitis C virus (HCV) plays a key role in viral replication. Reported here is evidence that HCV NS5B polymerase acts as a functional oligomer. Oligomerization of HCV NS5B protein was demonstrated by gel filtration, chemical cross-linking, temperature sensitivity, and yeast cell two-hybrid analysis. Mutagenesis studies showed that the C-terminal hydrophobic region of the protein was not essential for its oligomerization. Importantly, HCV NS5B polymerase exhibited cooperative RNA synthesis activity with a dissociation constant, K(d), of approximately 22 nM, suggesting a role for the polymerase-polymerase interaction in the regulation of HCV replicase activity. Further functional evidence includes the inhibition of the wild-type NS5B polymerase activity by a catalytically inactive form of NS5B. Finally, the X-ray crystal structure of HCV NS5B polymerase was solved at 2.9 A. Two extensive interfaces have been identified from the packing of the NS5B molecules in the crystal lattice, suggesting a higher-order structure that is consistent with the biochemical data.  相似文献   
969.
Regulation of the photosynthetic electron transport chain   总被引:19,自引:1,他引:19  
The regulation of electron transport between photosystems II and I was investigated in the plant Silene dioica L. by means of measurement of the kinetics of reduction of P700 following a light-to-dark transition. It was found that, in this species, the rate constant for P700 reduction is sensitive to light intensity and to the availability of CO2. The results indicated that at 25 °C the rate of electron transport is down-regulated by approximately 40–50% relative to the maximum rate achievable in saturating CO2 and that this down-regulation can be explained by regulation of the electron transport chain itself. Measurements of the temperature sensitivity of this rate constant indicated that there is a switch in the rate-limiting step that controls electron transport at around 20 °C: at higher temperatures, CO2 availability is limiting; at lower temperatures some other process regulates electron transport, possibly a diffusion step within the electron transport chain itself. Regulation of electron transport also occurred in response to drought stress and sucrose feeding. Measurements of non-photochemical quenching of chlorophyll fluorescence did not support the idea that electron transport is regulated by the pH gradient across the thylakoid membrane, and the possibility is discussed that the redox potential of a stromal component may regulate electron transport. Received: 4 March 1999 / Accepted: 25 May 1999  相似文献   
970.
Heparanase is a β-D-endoglucuronidase that cleaves heparan sulfate (HS), facilitating degradation of the extracellular matrix (ECM) and the release of HS-bound biomolecules including cytokines. The remodeling of the ECM by heparanase is important for various physiological and pathological processes, including inflammation, wound healing, tumour angiogenesis and metastasis. Although heparanase has been proposed to facilitate leukocyte migration through degradation of the ECM, its role in inflammation by regulating the expression and release of cytokines has not been fully defined. In this study, the role of heparanase in regulating the expression and release of cytokines from human and murine immune cells was examined. Human peripheral blood mononuclear cells treated ex vivo with heparanase resulted in the release of a range of pro-inflammatory cytokines including IL-1β, IL-6, IL-8, IL-10 and TNF. In addition, mouse splenocytes treated ex vivo with heparanase resulted in the release of IL-6, MCP-1 and TNF. A similar pattern of cytokine release was also observed when cells were treated with soluble HS. Furthermore, heparanase-induced cytokine release was abolished by enzymatic-inhibitors of heparanase, suggesting this process is mediated via the enzymatic release of cell surface HS fragments. As soluble HS can signal through the Toll-like receptor (TLR) pathway, heparanase may promote the upregulation of cytokines through the generation of heparanase-cleaved fragments of HS. In support of this hypothesis, mouse spleen cells lacking the key TLR adaptor molecule MyD88 demonstrated an abolition of cytokine release after heparanase stimulation. Furthermore, TLR4-deficient spleen cells showed reduced cytokine release in response to heparanase treatment, suggesting that TLR4 is involved in this response. Consistent with these observations, the pathway involved in cytokine upregulation was identified as being NF-κB-dependent. These data identify a new mechanism for heparanase in promoting the release of pro-inflammatory cytokines that is likely to be important in regulating cell migration and inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号