首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2344篇
  免费   192篇
  国内免费   1篇
  2537篇
  2023年   20篇
  2022年   49篇
  2021年   89篇
  2020年   46篇
  2019年   54篇
  2018年   61篇
  2017年   62篇
  2016年   137篇
  2015年   212篇
  2014年   196篇
  2013年   198篇
  2012年   297篇
  2011年   187篇
  2010年   118篇
  2009年   100篇
  2008年   110篇
  2007年   106篇
  2006年   95篇
  2005年   79篇
  2004年   59篇
  2003年   58篇
  2002年   43篇
  2001年   12篇
  2000年   6篇
  1999年   15篇
  1998年   15篇
  1997年   8篇
  1996年   11篇
  1995年   12篇
  1994年   4篇
  1993年   8篇
  1992年   9篇
  1991年   4篇
  1990年   2篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1979年   4篇
  1976年   2篇
  1968年   3篇
  1960年   3篇
  1959年   2篇
  1957年   2篇
  1940年   1篇
  1936年   1篇
  1927年   1篇
排序方式: 共有2537条查询结果,搜索用时 15 毫秒
121.
The objective of our study was to assess thepotential of the egg parasitoid Anagrusatomus L. (Hymenoptera: Mymaridae) for controlof the greenhouse leafhopper Empoascadecipiens Paoli (Homoptera: Cicadellidae). Theegg-adult development time, survivorship andreproduction of A. atomus were evaluatedat four constant temperatures (16, 20, 24 and28°C). Developmental time ranged from33.6 days at 16°C to 13.3 days at 28°C. Based on a linear regression ofdevelopment rate on temperature the lowerthreshold was estimated at 8.39°C. Anagrus atomus required 263.2 degree-days tocomplete its development from egg to adult. Theegg-adult survival rate and the sex ratio weresignificantly lower at 28°C than at theother three temperatures tested. The intrinsicrate of increase (r m) variedsignificantly between all four temperatures.The potential of A. atomus to attackdifferent host ages was additionallyinvestigated. Host eggs were parasitizedthroughout their development but rate ofparasitism was reduced in host eggs older thansix days. The number of eggs parasitized waspositively density dependent but the rate ofparasitism decreased with increasing hostdensity. A maximum rate of parasitism of 62.5%was recorded. The potential impact of the eggparasitoid on the population dynamics of E. decipiens is discussed.  相似文献   
122.
BACKGROUND: Nonviral vectors based on polyethylenimine (PEI) usually contain an excess of PEI that is not complexed to DNA. Since unbound PEI contributes to cellular and systemic toxicity, purification of polyplexes from unbound PEI is desirable. METHODS: Size exclusion chromatography (SEC) was used to purify PEI polyplexes of free PEI. Transfection properties of purified polyplexes and the effect of free PEI on gene delivery were studied in vitro and in vivo after systemic application into mice. RESULTS: SEC did not change the size and zeta-potential of polyplexes. Independent of the amount of PEI used for complex formation, purified PEI polyplexes had the same final PEI nitrogen/DNA phosphate ratio of 2.5. Notably, purified PEI polyplexes demonstrated low cellular and systemic toxicity. High transfection efficiency was achieved with purified polyplexes at high DNA concentrations (8-15 microg/ml). At low DNA concentrations (2-4 microg/ml) gene transfer with purified particles was less efficient than with polyplexes containing free PEI both in vitro and in vivo. Mechanistic studies showed that free PEI partly blocked cellular association of DNA complexes but was essential for the following intracellular gene delivery. Adding free PEI to cells treated with purified particles with a delay of up to 4 h resulted in significantly enhanced transfection efficiency compared with non-purified particles or purified particles without free PEI. CONCLUSIONS: This study presents an efficient method to remove free PEI from PEI polyplexes by SEC. Our results from transfection experiments demonstrate that free PEI substantially contributes to efficient gene expression but also mediates toxic effects in a dose-dependent manner. Purified polyplexes without free PEI have to be applied at increased concentrations to achieve high transfection levels, but exhibit a greatly improved toxicity profile.  相似文献   
123.
The accumulation of an autofluorescent pigment called lipofuscin in neurons is an invariable hallmark of brain aging. So far, this material has been considered to be waste material without particular relevance for cellular pathology. However, two lines of evidence argue that lipofuscin may play a yet unidentified role for pathological cellular functions: (i) Genetic forms of premature accumulation of similar autofluorescent material in neuronal ceroid lipofuscinosis indicate a direct disease-associated link to lipofuscin; (ii) Retinal pigment epithelium cell lipofuscin is mechanistically linked to age-associated macular degeneration. Here, we purified autofluorescent material from the temporal and hippocampal cortices of three different human individuals by a two-step ultracentrifugation on sucrose gradients. For human brain lipofuscin, we could identify a common set of 49 (among > 200 total) proteins that are mainly derived from mitochondria, cytoskeleton, and cell membrane. This brain lipofuscin proteome was validated in an interspecies comparison with whole brain rat lipofuscin (total > 300 proteins), purified by the same procedure, yielding an overlap of 32 proteins (64%) between lipofuscins of both species. Our study is the first to characterize human and rat brain lipofuscin and identifies high homology, pointing to common cellular pathomechanisms of age-associated lipofuscin accumulation despite the huge (40-fold) difference in the lifespan of these species. Our identification of these distinct proteins will now allow research in disturbed molecular pathways during age-associated dysfunctional lysosomal degradation.  相似文献   
124.
Abnormalities in metabolite profiles are valuable indicators of underlying pathologic conditions at the molecular level. However, their interpretation relies on detailed knowledge of the pathways, enzymes, and genes involved. Identification and characterization of their physiological function are therefore crucial for our understanding of human disease: they can provide guidance for therapeutic intervention and help us to identify suitable biomarkers for monitoring associated disorders. We studied two individuals with 2-aminoadipic and 2-oxoadipic aciduria, a metabolic condition that is still unresolved at the molecular level. This disorder has been associated with varying neurological symptoms. Exome sequencing of a single affected individual revealed compound heterozygosity for an initiating methionine mutation (c.1A>G) and a missense mutation (c.2185G>A [p.Gly729Arg]) in DHTKD1. This gene codes for dehydrogenase E1 and transketolase domain-containing protein 1, which is part of a 2-oxoglutarate-dehydrogenase-complex-like protein. Sequence analysis of a second individual identified the same missense mutation together with a nonsense mutation (c.1228C>T [p.Arg410]) in DHTKD1. Increased levels of 2-oxoadipate in individual-derived fibroblasts normalized upon lentiviral expression of the wild-type DHTKD1 mRNA. Moreover, investigation of L-lysine metabolism showed an accumulation of deuterium-labeled 2-oxoadipate only in noncomplemented cells, demonstrating that DHTKD1 codes for the enzyme mediating the last unresolved step in the L-lysine-degradation pathway. All together, our results establish mutations in DHTKD1 as a cause of human 2-aminoadipic and 2-oxoadipic aciduria via impaired turnover of decarboxylation 2-oxoadipate to glutaryl-CoA.  相似文献   
125.

Key message

QTL mapping in multiple families identifies trait-specific and pleiotropic QTL for biomass yield and plant height in triticale.

Abstract

Triticale shows a broad genetic variation for biomass yield which is of interest for a range of purposes, including bioenergy. Plant height is a major contributor to biomass yield and in this study, we investigated the genetic architecture underlying biomass yield and plant height by multiple-line cross QTL mapping. We employed 647 doubled haploid lines from four mapping populations that have been evaluated in four environments and genotyped with 1710 DArT markers. Twelve QTL were identified for plant height and nine for biomass yield which cross-validated explained 59.6 and 38.2 % of the genotypic variance, respectively. A major QTL for both traits was identified on chromosome 5R which likely corresponds to the dominant dwarfing gene Ddw1. In addition, we detected epistatic QTL for plant height and biomass yield which, however, contributed only little to the genetic architecture of the traits. In conclusion, our results demonstrate the potential of genomic approaches for a knowledge-based improvement of biomass yield in triticale.  相似文献   
126.
Cytosolic lipid droplets are versatile, evolutionarily conserved organelles that are important for the storage and utilization of lipids in almost all cell types. To obtain insight into the physiological importance of lipid droplet size, we isolated and characterized a new S-adenosyl methionine synthetase 1 (SAMS-1)-deficient Caenorhabditis elegans mutant, which have enlarged lipid droplets throughout its life cycle. We found that the sams-1 mutant showed a markedly reduced body size and progeny number; impaired synthesis of phosphatidylcholine, a major membrane phospholipid; and elevated expression of key lipogenic genes, such as dgat-2, resulting in the accumulation of triacylglyceride in fewer, but larger, lipid droplets. The sams-1 mutant store more than 50 % (wild type: 10 %) of its intestinal fat in large lipid droplets, ≥10 μm3 in size. In response to starvation, SAMS-1 deficiency causes reduced depletion of a subset of lipid droplets located in the anterior intestine. Given the importance of liberation of fatty acids from lipid droplets, we propose that the physiological function of SAMS-1, a highly conserved enzyme involved in one-carbon metabolism, is the limitation of fat storage to ensure proper growth and reproduction.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0386-6) contains supplementary material, which is available to authorized users.  相似文献   
127.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
128.
Large‐scale bioreactors for the production of monoclonal antibodies reach volumes of up to 25 000 L. With increasing bioreactor size, mixing is however affected negatively, resulting in the formation of gradients throughout the reactor. These gradients can adversely affect process performance at large scale. Since mammalian cells are sensitive to changes in pH, this study investigated the effects of pH gradients on process performance. A 2‐Compartment System was established for this purpose to expose only a fraction of the cell population to pH excursions and thereby mimicking a large‐scale bioreactor. Cells were exposed to repeated pH amplitudes of 0.4 units (pH 7.3), which resulted in decreased viable cell counts, as well as the inhibition of the lactate metabolic shift. These effects were furthermore accompanied by increased absolute lactate levels. Continuous assessment of molecular attributes of the expressed target protein revealed that subunit assembly or N‐glycosylation patterns were only slightly influenced by the pH excursions. The exposure of more cells to the same pH amplitudes further impaired process performance, indicating this is an important factor, which influences the impact of pH inhomogeneity. This knowledge can aid in the design of pH control strategies to minimize the effects of pH inhomogeneity in large‐scale bioreactors.  相似文献   
129.
Extremophiles - The compatible solutes ectoine and hydroxyectoine are synthesized by many microorganisms as potent osmostress and desiccation protectants. Besides their successful implementation...  相似文献   
130.
Fluorescence-based assays for the cytochrome P450 BM3 monooxygenase from Bacillus megaterium address an attractive biotechnological challenge by facilitating enzyme engineering and the identification of potential substrates of this highly promising biocatalyst. In the current study, we used the scarcity of corresponding screening systems as an opportunity to evaluate a novel and continuous high-throughput assay for this unique enzyme. A set of nine catalytically diverse P450 BM3 variants was constructed and tested toward the native substrate-inspired fluorogenic substrate 12-(4-trifluoromethylcoumarin-7-yloxy)dodecanoic acid. Particularly high enzyme-mediated O-dealkylation yielding the fluorescent product 7-hydroxy-4-trifluoromethylcoumarin was observed with mutants containing the F87V substitution, with A74G/F87V showing the highest catalytic efficiency (0.458 min−1 μM−1). To simplify the assay procedure and show its versatility, different modes of application were successfully demonstrated, including (i) the direct use of NADPH or its oxidized form NADP+ along with diverse NADPH recycling systems for electron supply, (ii) the use of cell-free lysates and whole-cell preparations as the biocatalyst source, and (iii) its use for competitive inhibition screens to identify or characterize substrates and inhibitors. A detailed comparison with known, fluorescence-based P450 BM3 assays finally emphasizes the relevance of our contribution to the ongoing research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号