首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   7篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   7篇
  2013年   6篇
  2012年   14篇
  2011年   16篇
  2010年   9篇
  2009年   8篇
  2008年   6篇
  2007年   7篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有131条查询结果,搜索用时 281 毫秒
91.
The mechanism(s) of glucose sensing for inducing the autophagic peroxisome degradation (pexophagy) is not known. Recently, we have found that defects in the S. cerevisiae PKA-cAMP signaling pathway due to knockouts of GPR1 and/or GPA2 suppressed glucose-induced degradation of peroxisomal thiolase. Here we report that single defects of high (SNF3) and low (RGT2) affinity glucose sensors involved in glucose-dependent induction of hexose transporters have only a slight effect on glucose-induced degradation of peroxisomal thiolase, although simultaneous defects of both sensors, SNF3 and RGT2 (which are known to strongly affect glucose transport) strongly inhibit this process in S. cerevisiae. Most likely, glucose is sensed for pexophagy using the Gpr1 sensor involved in the PKA-cAMP signaling pathway. In the methylotrophic yeast P. pastoris, however, knock out of S. cerevisiae orthologs of GPR1 and GPA2 did not affect glucose-induced degradation of oleate-induced thiolase or the methanolinduced key peroxisomal protein, alcohol oxidase. This implies that glucose sensing for pexophagy is different in baker's and methylotrophic yeasts.  相似文献   
92.
93.
It was shown that the development of experimental diabetes mellitus accompanied by increase of desialylation of carbohydrate determinants of erythrocytes membrane glycoproteins, removal of both O-linked and N-linked oligosaccharides from the glycoproteins and decrease of erythrocyte membrane negative charges. Treatment of streptozotocin-induced diabetic rats with agmatine led to enhance the content of N-and O-glycans in the erythrocyte glycoproteins, increase in sialic acid content and restore the negative charge of the cell membrane. Detected changes in configuration of membrane components of red blood cells in diabetic animals after treatment with agmatine indicate circulating in the bloodstream cells with a repertoire of adhesion molecules and glycoprotein receptors, which are inherent to the population of young erythrocyte.  相似文献   
94.
The neural cell adhesion molecule, NCAM, mediates Ca(2+)-independent cell-cell and cell-substratum adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-non-NCAM molecules) binding. NCAM plays a key role in neural development, regeneration, and synaptic plasticity, including learning and memory consolidation. The crystal structure of a fragment comprising the three N-terminal Ig modules of rat NCAM has been determined to 2.0 A resolution. Based on crystallographic data and biological experiments we present a novel model for NCAM homophilic binding. The Ig1 and Ig2 modules mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), whereas the Ig3 module mediates interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions) through simultaneous binding to the Ig1 and Ig2 modules. This arrangement results in two perpendicular zippers forming a double zipper-like NCAM adhesion complex.  相似文献   
95.
The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.  相似文献   
96.
97.
98.
Since the two eutherian sex chromosomes diverged from an ancestral autosomal pair, the X has remained relatively gene-rich, while the Y has lost most of its genes through the accumulation of deleterious mutations in nonrecombining regions. Presently, it is unclear what is distinctive about genes that remain on the Y chromosome, when the sex chromosomes acquired their unique evolutionary rates, and whether X-Y gene divergence paralleled that of paralogs located on autosomes. To tackle these questions, here we juxtaposed the evolution of X and Y homologous genes (gametologs) in eutherian mammals with their autosomal orthologs in marsupial and monotreme mammals. We discovered that genes on the X and Y acquired distinct evolutionary rates immediately following the suppression of recombination between the two sex chromosomes. The Y-linked genes evolved at higher rates, while the X-linked genes maintained the lower evolutionary rates of the ancestral autosomal genes. These distinct rates have been maintained throughout the evolution of X and Y. Specifically, in humans, most X gametologs and, curiously, also most Y gametologs evolved under stronger purifying selection than similarly aged autosomal paralogs. Finally, after evaluating the current experimental data from the literature, we concluded that unique mRNA/protein expression patterns and functions acquired by Y (versus X) gametologs likely contributed to their retention. Our results also suggest that either the boundary between sex chromosome strata 3 and 4 should be shifted or that stratum 3 should be divided into two strata.  相似文献   
99.
The 1641 bp cDNA encoding an extra-cellular lipase of the basidiomycete Pleurotus sapidus (Lip2) was cloned from a cDNA library. Expression of the cDNA in Escherichia coli, with and without signal sequence, led to the production of recombinant Lip2, mainly as inclusion bodies with low catalytic activity. Refolding yielded catalytically active protein. A C-terminal His tag was used for purification and immunochemical detection. The recombinant lipase hydrolysed xanthophyll esters with high efficiency, and omitting the signal sequence did not alter the catalytic properties. The P. sapidus lipase represents the first enzyme of the lipase/esterase family from a basidiomycetous fungus characterised on the molecular level and expressed in a manageable host.  相似文献   
100.
Far-red fluorescent proteins are required for deep-tissue and whole-animal imaging and multicolor labeling in the red wavelength range, as well as probes excitable with standard red lasers in flow cytometry and fluorescence microscopy. Rapidly evolving superresolution microscopy based on the stimulated emission depletion approach also demands genetically encoded monomeric probes to tag intracellular proteins at the molecular level. Based on the monomeric mKate variant, we have developed a far-red TagRFP657 protein with excitation/emission maxima at 611/657 nm. TagRFP657 has several advantages over existing monomeric far-red proteins including higher photostability, better pH stability, lower residual green fluorescence, and greater efficiency of excitation with red lasers. The red-shifted excitation and emission spectra, as compared to other far-red proteins, allows utilizing TagRFP657 in flow cytometry and fluorescence microscopy simultaneously with orange or near-red fluorescence proteins. TagRFP657 is shown to be an efficient protein tag for the superresolution fluorescence imaging using a commercially available stimulated emission depletion microscope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号