首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   7篇
  118篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   7篇
  2014年   7篇
  2013年   5篇
  2012年   12篇
  2011年   13篇
  2010年   8篇
  2009年   8篇
  2008年   6篇
  2007年   7篇
  2006年   5篇
  2005年   7篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
11.
12.
13.
The neural cell adhesion molecule (NCAM) is pivotal in neural development, regeneration, and learning. Here we characterize two peptides, termed P1-B and P2, derived from the homophilic binding sites in the first two N-terminal immunoglobulin (Ig) modules of NCAM, with regard to their effects on neurite extension and adhesion. To evaluate how interference of these mimetic peptides with NCAM homophilic interactions in cis influences NCAM binding in trans, we employed a coculture system in which PC12-E2 cells were grown on monolayers of fibroblasts with or without NCAM expression and the rate of neurite outgrowth subsequently was analyzed. P2, but not P1-B, induced neurite outgrowth in the absence of NCAM binding in trans. When PC12-E2 cells were grown on monolayers of NCAM-expressing fibroblasts, the effect of both P1-B and P2 on neurite outgrowth was dependent on peptide concentrations. P1-B and P2 acted as conventional antagonists, agonists, and reverse agonists of NCAM at low, intermediate, and high peptide concentrations, respectively. The demonstrated in vitro triple pharmacological effect of mimetic peptides interfering with the NCAM homophilic cis binding will be valuable for the understanding of the actions of these mimetics in vivo.  相似文献   
14.
Self-assembling protein nanocapsules can be engineered for various bionanotechnology applications. Using the dodecahedral scaffold of the E2 subunit from pyruvate dehydrogenase, we introduced non-native surface cysteines for site-directed functionalization. The modified nanoparticle's structural, assembly, and thermostability properties were comparable to the wild-type scaffold (E2-WT), and after conjugation of poly(ethylene glycol) (PEG) to these cysteines, the nanoparticle remained intact and stable up to 79.7 ± 1.8 °C. PEGylation of particles reduced uptake by human monocyte-derived macrophages and MDA-MB-231 breast cancer cells, with decreased uptake as PEG chain length is increased. In vitro C4-depletion and C5a-production assays yielded 97.6 ± 10.8% serum C4 remaining and 40.1 ± 6.0 ng/mL C5a for E2-WT, demonstrating that complement activation is weak for non-PEGylated E2 nanoparticles. Conjugation of PEG to these particles moderately increased complement response to give 79.7 ± 6.0% C4 remaining and 87.6 ± 10.1 ng/mL C5a. Our results demonstrate that PEGylation of the E2 protein nanocapsules can modulate cellular uptake and induce low levels of complement activation, likely via the classical/lectin pathways.  相似文献   
15.
AIM: To investigate the role of protein tyrosine phosphorylation in gastric wound formation and repair following ulceration.METHODS: Gastric lesions were induced in rats using restraint cold stress. To investigate the effect of oxidative and nitrosative cell stress on tyrosine phosphorylation during wound repair, total activity of protein tyrosine kinase (PTK), protein tyrosine phosphatase (PTP), antioxidant enzymes, nitric oxide synthase (NOS), 2’,5’-oligoadenylate synthetase, hydroxyl radical and zinc levels were assayed in parallel.RESULTS: Ulcer provocation induced an immediate decrease in tyrosine kinase (40% in plasma membranes and 56% in cytosol, P < 0.05) and phosphatase activity (threefold in plasma membranes and 3.3-fold in cytosol), followed by 2.3-2.4-fold decrease (P < 0.05) in protein phosphotyrosine content in the gastric mucosa. Ulceration induced no immediate change in superoxide dismutase (SOD) activity, 30% increase (P < 0.05) in catalase activity, 2.3-fold inhibition (P < 0.05) of glutathione peroxidase, 3.3-fold increase (P < 0.05) in hydroxyl radical content, and 2.3-fold decrease (P < 0.05) in zinc level in gastric mucosa. NOS activity was three times higher in gastric mucosa cells after cold stress. Following ulceration, PTK activity increased in plasma membranes and reached a maximum on day 4 after stress (twofold increase, P < 0.05), but remained inhibited (1.6-3-fold decrease on days 3, 4 and 5, P < 0.05) in the cytosol. Tyrosine phosphatases remained inhibited both in membranes and cytosol (1.5-2.4-fold, P < 0.05). NOS activity remained increased on days 1, 2 and 3 (3.8-, 2.6-, 2.2-fold, respectively, P < 0.05). Activity of SOD increased 1.6 times (P < 0.05) days 4 and 5 after stress. Catalase activity normalized after day 2. Glutathione peroxidase activity and zinc level decreased (3.3- and 2-fold, respectively, P < 0.05) on the last day. Activity of 2’,5’-oligoadenylate synthethase increased 2.8-fold (P < 0.05) at the beginning, and 1.6-2.3-fold (P < 0.05) during ulcer recuperation, and normalized on day 5, consistent with slowing of inflammation processes.CONCLUSION: These studies show diverse changes in total tyrosine kinase activity in gastric mucosa during the recovery process. Oxidative and nitrosative stress during lesion formation might lead to the observed reduction in tyrosine phosphorylation during ulceration.  相似文献   
16.
PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo-β-lactamase superfamily, PhnP is most homologous in sequence and structure to tRNase Z phosphodiesterases. X-ray structural analysis of PhnP complexed with orthovanadate to 1.5 ? resolution revealed this inhibitor bound in a tetrahedral geometry by the two catalytic manganese ions and the putative general acid residue H200. Guided by this structure, we probed the contributions of first- and second-sphere active site residues to catalysis and metal ion binding by site-directed mutagenesis, kinetic analysis, and ICP-MS. Alteration of H200 to alanine resulted in a 6-33-fold decrease in k(cat)/K(M) with substituted methyl phenylphosphate diesters with leaving group pK(a) values ranging from 4 to 8.4. With bis(p-nitrophenyl)phosphate as a substrate, there was a 10-fold decrease in k(cat)/K(M), primarily the result of a large increase in K(M). Moreover, the nickel ion-activated H200A PhnP displayed a bell-shaped pH dependence for k(cat)/K(M) with pK(a) values (pK(a1) = 6.3; pK(a2) = 7.8) that were comparable to those of the wild-type enzyme (pK(a1) = 6.5; pK(a2) = 7.8). Such modest effects are counter to what is expected for a general acid catalyst and suggest an alternate role for H200 in this enzyme. A Br?nsted analysis of the PhnP reaction with a series of substituted phenyl methyl phosphate esters yielded a linear correlation, a β(lg) of -1.06 ± 0.1, and a Leffler α value of 0.61, consistent with a synchronous transition state for phosphoryl transfer. On the basis of these data, we propose a mechanism for PhnP.  相似文献   
17.
In many species the mutation rate is higher in males than in females, a phenomenon denoted as male mutation bias. This is often observed in animals where males produce many more sperm than females produce eggs, and is thought to result from differences in the number of replication-associated mutations accumulated in each sex. Thus, studies of male mutation bias have the capacity to reveal information about the replication-dependent or replication-independent nature of different mutations. The availability of whole genome sequences for many species, as well as for multiple individuals within a species, has opened the door to studying factors, both sequence-specific and those acting on the genome globally, that affect differences in mutation rates between males and females. Here, we assess the advantages that genomic sequences provide for studies of male mutation bias and general mutation mechanisms, discuss major challenges left unresolved, and speculate about the direction of future studies.  相似文献   
18.
The neural cell adhesion molecule, NCAM, is known to stimulate neurite outgrowth from primary neurones and PC12 cells presumably through signalling pathways involving the fibroblast growth factor receptor (FGFR), protein kinase A (PKA), protein kinase C (PKC), the Ras-mitogen activated protein kinase (MAPK) pathway and an increase in intracellular Ca2+ levels. Stimulation of neurones with the synthetic NCAM-ligand, C3, induces neurite outgrowth through signalling pathways similar to the pathways activated through physiological, homophilic NCAM-stimulation. We present here data indicating that phosphatidylinositol 3-kinase (PI3K) is required for NCAM-mediated neurite outgrowth from PC12-E2 cells and from cerebellar and dopaminergic neurones in primary culture, and that the thr/ser kinase Akt/protein kinase B (PKB) is phosphorylated downstream of PI3K after stimulation with C3. Moreover, we present data indicating a survival-promoting effect of NCAM-stimulation by C3 on cerebellar and dopaminergic neurones induced to undergo apoptosis. This protective effect of C3 included an inhibition of both DNA-fragmentation and caspase-3 activation. The survival-promoting effect of NCAM-stimulation was also shown to be dependent on PI3K.  相似文献   
19.
20.
Biomaterials play a fundamental role in disease management and the improvement of health care. In recent years, there has been a significant growth in the diversity, function, and number of biomaterials used worldwide. Yet, attachment of pathogenic microorganisms onto biomaterial surfaces remains a significant challenge that substantially undermines their clinical applicability, limiting the advancement of these systems. The emergence and escalating pervasiveness of antibiotic-resistant bacterial strains makes the management of biomaterial-associated nosocomial infections increasingly difficult. The conventional post-operative treatment of implant-caused infections using systemic antibiotics is often marginally effective, further accelerating the extent of antimicrobial resistance. Methods by which the initial stages of bacterial attachment and biofilm formation can be restricted or prevented are therefore sought. The surface modification of biomaterials has the potential to alleviate pathogenic biofouling, therefore preventing the need for conventional antibiotics to be applied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号